Skip to content
Snippets Groups Projects
Commit 5e2715dc authored by Cassandra Grzonkowski's avatar Cassandra Grzonkowski
Browse files

plot saved feature data, first version

parent e07847fa
No related branches found
No related tags found
1 merge request!1Instant spectograms
import argparse
import matplotlib.pyplot as plt
import torch
import numpy as np
def setup_parser():
out = argparse.ArgumentParser()
out.add_argument('--folder',
default=r'C:/Users/cassi/OneDrive/Desktop/Master_Thesis/2702_test/',
type=str, help="Path to load model parameter")
return out
def plot(data, label, save_path):
fig = plt.figure()
data = np.array(data)
plt.plot(np.arange(0, len(data)), data, label=label)
plt.legend()
plt.savefig(save_path)
if __name__ == '__main__':
parser = setup_parser()
args, unknown = parser.parse_known_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
folder = args.folder
with open(f"{folder}avg_prob_non_empty_per_batch.txt", 'r') as fp:
avg_prob_non_empty_pre = fp.read()
avg_prob_non_empty_pre = avg_prob_non_empty_pre.split("\n")
avg_prob_non_empty = [float(t) for t in avg_prob_non_empty_pre[:-1]]
plot(avg_prob_non_empty, "avg_prob_non_empty", f"{folder}avg_prob_non_empty.png")
with open(f"{folder}ms_per_batch.txt", 'r') as fp:
ms_per_batch_all_pre = fp.read()
ms_per_batch_all_pre = ms_per_batch_all_pre.split("\n")
ms_per_batch_all = [float(t) for t in ms_per_batch_all_pre[:-1]]
plot(ms_per_batch_all, "ms_per_batch_all", f"{folder}ms_per_batch_all.png")
with open(f"{folder}ppl.txt", 'r') as fp:
ppl_all_pre = fp.read()
ppl_all_pre = ppl_all_pre.split("\n")
ppl_all = [float(t) for t in ppl_all_pre[:-1]]
plot(ppl_all[1:], "ppl_all", f"{folder}ppl_all.png")
with open(f"{folder}ppl_v_2.txt", 'r') as fp:
ppl_v_2_all_pre = fp.read()
ppl_v_2_all_pre = ppl_v_2_all_pre.split("\n")
ppl_v_2_all = [float(t) for t in ppl_v_2_all_pre[:-1]]
plot(ppl_v_2_all[7:], "ppl_v_2_all", f"{folder}ppl_v_2_all.png")
with open(f"{folder}loss.txt", 'r') as fp:
loss_all_pre = fp.read()
loss_all_pre = loss_all_pre.split("\n")
loss_all = [float(t) for t in loss_all_pre[:-1]]
plot(loss_all, "loss_all", f"{folder}loss_all.png")
try:
with open(f"{folder}greater_ratio_values.txt", 'r') as fp:
greater_ratio_values_all_pre = fp.read()
greater_ratio_values_all_pre = greater_ratio_values_all_pre.split("\n")
greater_ratio_values_all = [float(t) for t in greater_ratio_values_all_pre[:-1]]
plot(greater_ratio_values_all, "greater_ratio_values_all", f"{folder}greater_ratio_values_all.png")
except FileNotFoundError:
greater_ratio_values_all = []
with open(f"{folder}avg_prob_non_empty_per_batch.txt", 'r') as fp:
avg_prob_non_empty_per_batch_pre = fp.read()
avg_prob_non_empty_per_batch_pre = avg_prob_non_empty_per_batch_pre.split("\n")
avg_prob_non_empty_per_batch = [float(t) for t in avg_prob_non_empty_per_batch_pre[:-1]]
plot(avg_prob_non_empty_per_batch, "avg_prob_non_empty_per_batch", f"{folder}avg_prob_non_empty_per_batch.png")
with open(f"{folder}average_right_tokens.txt", 'r') as fp:
average_right_tokens_all_pre = fp.read()
average_right_tokens_all_pre = average_right_tokens_all_pre.split("\n")
average_right_tokens_all = [float(t) for t in average_right_tokens_all_pre[:-1]]
plot(average_right_tokens_all, "average_right_tokens_all", f"{folder}average_right_tokens_all.png")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment