Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
danceformer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
grzonkow
danceformer
Commits
c194bbbf
Commit
c194bbbf
authored
Apr 17, 2024
by
Cassandra Grzonkowski
Browse files
Options
Downloads
Patches
Plain Diff
visualization local applied
parent
e2890c82
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
visualize.py
+565
-185
565 additions, 185 deletions
visualize.py
visualize_matrix.py
+35
-0
35 additions, 0 deletions
visualize_matrix.py
with
600 additions
and
185 deletions
visualize.py
+
565
−
185
View file @
c194bbbf
...
...
@@ -26,8 +26,8 @@ def setup_parser(folder_given, folder_given_2=None, folder_given_3=None, folder_
out
.
add_argument
(
'
--folder_13
'
,
default
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_given_6
}
/
'
,
type
=
str
,
help
=
"
Path to load model parameter
"
)
out
.
add_argument
(
'
--save_folder
'
,
default
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_1_models_v_
3_epoch_2/
'
,
out
.
add_argument
(
'
--save_folder
'
,
# epoch_1_models_v_3
default
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_1_models_v_
2/test/
'
,
# epoch_1_models_v_2/test
type
=
str
,
help
=
"
Path to load model parameter
"
)
return
out
...
...
@@ -39,22 +39,43 @@ def plot(data, label, save_path):
plt
.
legend
()
plt
.
savefig
(
save_path
)
def
plot_accuracy
(
data_1
,
label_1
,
data_2
,
label_2
,
data_3
,
label_3
,
save_path
):
fig
=
plt
.
figure
()
data_1
=
np
.
array
(
data_1
)
data_2
=
np
.
array
(
data_2
)
data_3
=
np
.
array
(
data_3
)
def
plot_accuracy
(
data_1
,
label_1
,
data_2
,
label_2
,
data_3
,
label_3
,
data_4
,
label_4
,
data_5
,
label_5
,
data_6
,
label_6
,
save_path
):
fig
=
plt
.
figure
(
figsize
=
(
16
,
8
))
#data_1 = np.array(data_1)
data_1
=
torch
.
cat
(
data_1
,
dim
=
0
)
#data_2 = np.array(data_2)
data_2
=
torch
.
cat
(
data_2
,
dim
=
0
)
#data_3 = np.array(data_3)
data_3
=
torch
.
cat
(
data_3
,
dim
=
0
)
#data_4 = np.array(data_4)
data_4
=
torch
.
cat
(
data_4
,
dim
=
0
)
#data_5 = np.array(data_5)
data_5
=
torch
.
cat
(
data_5
,
dim
=
0
)
#data_6 = np.array(data_6)
data_6
=
torch
.
cat
(
data_6
,
dim
=
0
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_1
)),
data_1
,
label
=
label_1
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_2
)),
data_2
,
label
=
label_2
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_3
)),
data_3
,
label
=
label_3
)
plt
.
legend
()
plt
.
xlabel
(
"
batch
"
)
plt
.
ylabel
(
"
ratio
"
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_4
)),
data_4
,
label
=
label_4
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_5
)),
data_5
,
label
=
label_5
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_6
)),
data_6
,
label
=
label_6
)
size
=
30
plt
.
legend
(
loc
=
'
upper left
'
,
prop
=
{
'
size
'
:
22
})
step
=
867
token
=
[]
epochs
=
[
0
,
1
,
2
,
3
,
4
,
5
]
for
epoch
in
epochs
:
token
.
extend
([
epoch
]
*
step
)
plt
.
xticks
(
range
(
0
,
len
(
data_1
),
step
),
token
[::
step
],
fontsize
=
22
)
plt
.
yticks
(
fontsize
=
22
)
plt
.
xlabel
(
"
epoch
"
,
fontsize
=
size
)
plt
.
ylabel
(
"
accuracy
"
,
fontsize
=
size
)
plt
.
savefig
(
save_path
)
def
plot_accuracy_1
(
save_path
,
data_1
,
label_1
,
data_2
,
label_2
,
data_3
=
None
,
label_3
=
None
,
data_4
=
None
,
label_4
=
None
,
data_5
=
None
,
label_5
=
None
,
data_6
=
None
,
label_6
=
None
):
fig
=
plt
.
figure
()
def
plot_accuracy_1
(
save_path
,
type
,
data_1
,
label_1
,
data_2
,
label_2
,
data_3
=
None
,
label_3
=
None
,
data_4
=
None
,
label_4
=
None
,
data_5
=
None
,
label_5
=
None
,
data_6
=
None
,
label_6
=
None
,
data_7
=
None
,
label_7
=
None
,
data_8
=
None
,
label_8
=
None
):
fig
=
plt
.
figure
(
figsize
=
(
15
,
8
)
)
data_1
=
np
.
array
(
data_1
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_1
)),
data_1
,
label
=
label_1
)
data_2
=
np
.
array
(
data_2
)
...
...
@@ -71,54 +92,274 @@ def plot_accuracy_1(save_path, data_1, label_1, data_2, label_2, data_3=None, la
if
data_6
is
not
None
:
data_6
=
np
.
array
(
data_6
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_6
)),
data_6
,
label
=
label_6
)
plt
.
legend
()
plt
.
xlabel
(
"
batch
"
)
plt
.
ylabel
(
"
ratio
"
)
if
data_7
is
not
None
:
data_7
=
np
.
array
(
data_7
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_7
)),
data_7
,
label
=
label_7
)
if
data_8
is
not
None
:
data_8
=
np
.
array
(
data_8
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_8
)),
data_8
,
label
=
label_8
)
size
=
30
plt
.
legend
(
loc
=
'
upper left
'
,
prop
=
{
'
size
'
:
22
})
plt
.
xticks
(
fontsize
=
22
)
plt
.
yticks
(
fontsize
=
22
)
plt
.
xlabel
(
"
batch
"
,
fontsize
=
size
)
plt
.
ylabel
(
type
,
fontsize
=
size
)
plt
.
savefig
(
save_path
)
def
plot_ppl_loss
(
data_1
,
label_1
,
data_2
,
label_2
,
save_path
):
fig
=
plt
.
figure
()
data_1
=
np
.
array
(
data_1
)
data_2
=
np
.
array
(
data_2
)
def
plot_ppl_loss
(
type
,
data_1
,
label_1
,
data_2
,
label_2
,
data_3
,
label_3
,
data_4
,
label_4
,
save_path
):
fig
=
plt
.
figure
(
figsize
=
(
16
,
8
))
#data_1 = np.array(data_1)
data_1
=
torch
.
cat
(
data_1
,
dim
=
0
)
#data_2 = np.array(data_2)
data_2
=
torch
.
cat
(
data_2
,
dim
=
0
)
#data_3 = np.array(data_3)
data_3
=
torch
.
cat
(
data_3
,
dim
=
0
)
#data_4 = np.array(data_4)
data_4
=
torch
.
cat
(
data_4
,
dim
=
0
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_1
)),
data_1
,
label
=
label_1
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_2
)),
data_2
,
label
=
label_2
)
plt
.
legend
()
plt
.
xlabel
(
"
batch
"
)
plt
.
ylabel
(
"
ratio
"
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_3
)),
data_3
,
label
=
label_3
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_4
)),
data_4
,
label
=
label_4
)
size
=
30
plt
.
legend
(
loc
=
'
upper left
'
,
prop
=
{
'
size
'
:
22
})
#plt.xticks(fontsize=22)
step
=
867
token
=
[]
epochs
=
[
0
,
1
,
2
,
3
,
4
,
5
]
for
epoch
in
epochs
:
token
.
extend
([
epoch
]
*
step
)
plt
.
xticks
(
range
(
0
,
len
(
data_1
),
step
),
token
[::
step
],
fontsize
=
22
)
plt
.
yticks
(
fontsize
=
22
)
plt
.
xlabel
(
"
epoch
"
,
fontsize
=
size
)
plt
.
ylabel
(
type
,
fontsize
=
size
)
plt
.
savefig
(
save_path
)
def
plot_ppl_loss_1
(
save_path
,
data_1
,
label_1
,
data_2
,
label_2
,
data_3
=
None
,
label_3
=
None
,
data_4
=
None
,
label_4
=
None
,
data_5
=
None
,
label_5
=
None
,
data_6
=
None
,
label_6
=
None
):
fig
=
plt
.
figure
()
def
plot_ppl_loss_1
(
type
,
save_path
,
data_1
,
label_1
,
data_2
,
label_2
,
data_3
=
None
,
label_3
=
None
,
data_4
=
None
,
label_4
=
None
,
data_5
=
None
,
label_5
=
None
,
data_6
=
None
,
label_6
=
None
,
data_7
=
None
,
label_7
=
None
,
data_8
=
None
,
label_8
=
None
):
fig
=
plt
.
figure
(
figsize
=
(
10
,
8
)
)
data_1
=
np
.
array
(
data_1
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_1
)),
data_1
,
label
=
label_1
)
data_2
=
np
.
array
(
data_2
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_2
)),
data_2
,
label
=
label_2
)
if
data_3
is
not
None
:
data_3
=
np
.
array
(
data_3
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_3
)),
data_3
,
label
=
label_3
)
if
data_4
is
not
None
:
data_4
=
np
.
array
(
data_4
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_4
)),
data_4
,
label
=
label_4
)
if
data_5
is
not
None
:
data_5
=
np
.
array
(
data_5
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_5
)),
data_5
,
label
=
label_5
)
if
data_6
is
not
None
:
data_6
=
np
.
array
(
data_6
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_6
)),
data_6
,
label
=
label_6
)
plt
.
legend
()
plt
.
xlabel
(
"
batch
"
)
plt
.
ylabel
(
"
ratio
"
)
if
data_7
is
not
None
:
data_7
=
np
.
array
(
data_7
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_7
)),
data_7
,
label
=
label_7
)
if
data_8
is
not
None
:
data_8
=
np
.
array
(
data_8
)
plt
.
plot
(
np
.
arange
(
0
,
len
(
data_8
)),
data_8
,
label
=
label_8
)
size
=
30
plt
.
legend
(
prop
=
{
'
size
'
:
22
})
plt
.
xticks
(
fontsize
=
22
)
plt
.
yticks
(
fontsize
=
22
)
plt
.
xlabel
(
"
batch
"
,
fontsize
=
size
)
plt
.
ylabel
(
type
,
fontsize
=
size
)
plt
.
savefig
(
save_path
)
if
__name__
==
'
__main__
'
:
version_1
=
True
version
=
"
version_01
"
if
version
==
"
version_01
"
:
#folder_given = "epoch_3_eval/Model_et_epoch_3_fraxtil"
#folder_given = "epoch_3_eval/thresholding_epoch_3_fraxtil"
#folder_given = "combine_tokens_approach_2803_s_e_token_no_u_token"
folder_given
=
"
Model_empty_token_approach_t_2
"
#folder_given = "thresholding_2503_all_data_3_new_comb_t_100"
#folder_given = "Model_lrt_approach_without_thresholding_cpu"
folder_given_2
=
"
Model_lrt_approach_cpu
"
#folder_given = "Model_lrt_approach_and_thresholding_cpu"
approach
=
"
ET
"
approach_1
=
"
ST
"
#parser = setup_parser(folder_given)
#args, unknown = parser.parse_known_args()
device
=
torch
.
device
(
'
cuda
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
save_folder
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/long_models/results/
'
folder
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/long_models/ET_t2/
'
folder_2
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/long_models/ST_t2/
'
epochs
=
[
1
,
2
,
3
,
4
,
5
,
6
]
all_ppl
=
[]
all_ppl_len
=
[]
all_ppl_2
=
[]
all_ppl_2_len
=
[]
all_ppl_v_2
=
[]
all_ppl_v_2_len
=
[]
all_ppl_v_2_2
=
[]
all_ppl_v_2_2_len
=
[]
all_loss
=
[]
all_loss_len
=
[]
all_loss_2
=
[]
all_loss_2_len
=
[]
all_loss_v_2
=
[]
all_loss_v_2_len
=
[]
all_loss_v_2_2
=
[]
all_loss_v_2_2_len
=
[]
all_loss_v_3
=
[]
all_loss_v_3_len
=
[]
all_loss_v_3_2
=
[]
all_loss_v_3_2_len
=
[]
all_accuracy
=
[]
all_accuracy_len
=
[]
all_accuracy_2
=
[]
all_accuracy_2_len
=
[]
all_accuracy_v_2
=
[]
all_accuracy_v_2_len
=
[]
all_accuracy_v_2_2
=
[]
all_accuracy_v_2_2_len
=
[]
all_accuracy_v_3
=
[]
all_accuracy_v_3_len
=
[]
all_accuracy_v_3_2
=
[]
all_accuracy_v_3_2_len
=
[]
for
epoch
in
epochs
:
ppl
=
torch
.
load
(
f
"
{
folder
}
ppl_batches_epoch_
{
epoch
}
"
)
all_ppl
.
append
(
ppl
)
all_ppl_len
.
append
(
len
(
ppl
))
ppl_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_batches_epoch_
{
epoch
}
"
)
all_ppl_2
.
append
(
ppl_2
)
all_ppl_2_len
.
append
(
len
(
ppl_2
))
ppl_v_2
=
torch
.
load
(
f
"
{
folder
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
all_ppl_v_2
.
append
(
ppl_v_2
)
all_ppl_v_2_len
.
append
(
len
(
ppl_v_2
))
ppl_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
all_ppl_v_2_2
.
append
(
ppl_v_2_2
)
all_ppl_v_2_2_len
.
append
(
len
(
ppl_v_2_2
))
#ms_per_batch = torch.load(f"{folder}ms_all_batches_epoch_{epoch}")
#ms_per_batch_2 = torch.load(f"{folder_2}ms_all_batches_epoch_{epoch}")
loss
=
torch
.
load
(
f
"
{
folder
}
loss_epoch_
{
epoch
}
"
)
all_loss
.
append
(
loss
)
all_loss_len
.
append
(
len
(
loss
))
loss_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_epoch_
{
epoch
}
"
)
all_loss_2
.
append
(
loss_2
)
all_loss_2_len
.
append
(
len
(
loss_2
))
accuracy
=
torch
.
load
(
f
"
{
folder
}
accuracy_epoch_
{
epoch
}
"
)
all_accuracy
.
append
(
accuracy
)
all_accuracy_len
.
append
(
len
(
accuracy
))
accuracy_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_epoch_
{
epoch
}
"
)
all_accuracy_2
.
append
(
accuracy_2
)
all_accuracy_2_len
.
append
(
len
(
accuracy_2
))
loss_v_2
=
torch
.
load
(
f
"
{
folder
}
loss_v_2_epoch_
{
epoch
}
"
)
all_loss_v_2
.
append
(
loss_v_2
)
all_loss_v_2_len
.
append
(
len
(
loss_v_2
))
loss_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_v_2_epoch_
{
epoch
}
"
)
all_loss_v_2_2
.
append
(
loss_v_2_2
)
all_loss_v_2_2_len
.
append
(
len
(
loss_v_2_2
))
accuracy_v_2
=
torch
.
load
(
f
"
{
folder
}
accuracy_v_2_epoch_
{
epoch
}
"
)
all_accuracy_v_2
.
append
(
accuracy_v_2
)
all_accuracy_v_2_len
.
append
(
len
(
accuracy_v_2
))
accuracy_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_2_epoch_
{
epoch
}
"
)
all_accuracy_v_2_2
.
append
(
accuracy_v_2_2
)
all_accuracy_v_2_2_len
.
append
(
len
(
accuracy_v_2_2
))
accuracy_v_3
=
torch
.
load
(
f
"
{
folder
}
accuracy_v_3_epoch_
{
epoch
}
"
)
all_accuracy_v_3
.
append
(
accuracy_v_3
)
all_accuracy_v_3_len
.
append
(
len
(
accuracy_v_3
))
accuracy_v_3_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_3_epoch_
{
epoch
}
"
)
all_accuracy_v_3_2
.
append
(
accuracy_v_3_2
)
all_accuracy_v_3_2_len
.
append
(
len
(
accuracy_v_3_2
))
#with open(f"{folder}accuracy.txt", 'r') as fp:
# avg_prob_non_empty_pre = fp.read()
#avg_prob_non_empty_pre = avg_prob_non_empty_pre.split("\n")
#avg_prob_non_empty = [float(t) for t in avg_prob_non_empty_pre[:-1]]
plot_accuracy
(
all_accuracy
,
"
ET_accuracy
"
,
all_accuracy_2
,
"
ST_accuracy
"
,
all_accuracy_v_2
,
"
ET_accuracy_step
"
,
all_accuracy_v_2_2
,
"
ST_accuracy_step
"
,
all_accuracy_v_3
,
"
ET_accuracy_anystep
"
,
all_accuracy_v_3_2
,
"
ST_accuracy_anystep
"
,
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_accuracy_epoch_
{
epoch
}
.pdf
"
)
plot_ppl_loss
(
"
perplexity
"
,
all_ppl
,
"
ET_ppl
"
,
all_ppl_2
,
"
ST_ppl
"
,
all_ppl_v_2
,
"
ET_ppl_step
"
,
all_ppl_v_2_2
,
"
ST_ppl_step
"
,
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_ppl_epoch_
{
epoch
}
.pdf
"
)
#plot(ms_per_batch, "ms_per_batch", f"{args.save_folder}{approach}_ms_per_batch_epoch_{epoch}.pdf")
plot_ppl_loss
(
"
loss
"
,
all_loss
,
"
ET_loss
"
,
all_loss_2
,
"
ST_loss
"
,
all_loss_v_2
,
"
ET_loss_step
"
,
all_loss_v_2_2
,
"
ST_loss_step
"
,
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_loss_epoch_
{
epoch
}
.pdf
"
)
elif
version
==
"
version_0
"
:
#folder_given = "epoch_3_eval/Model_et_epoch_3_fraxtil"
#folder_given = "epoch_3_eval/thresholding_epoch_3_fraxtil"
#folder_given = "combine_tokens_approach_2803_s_e_token_no_u_token"
folder_given
=
"
Model_empty_token_approach_t_2
"
#folder_given = "thresholding_2503_all_data_3_new_comb_t_100"
#folder_given = "Model_lrt_approach_without_thresholding_cpu"
folder_given_2
=
"
Model_lrt_approach_cpu
"
#folder_given = "Model_lrt_approach_and_thresholding_cpu"
approach
=
"
ET
"
approach_1
=
"
ST
"
#parser = setup_parser(folder_given)
#args, unknown = parser.parse_known_args()
device
=
torch
.
device
(
'
cuda
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
save_folder
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_1_models_v_2/overview_2/
'
folder
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_given
}
/
'
folder_2
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_given_2
}
/
'
epoch
=
1
ppl
=
torch
.
load
(
f
"
{
folder
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_v_2
=
torch
.
load
(
f
"
{
folder
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
ppl_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
#ms_per_batch = torch.load(f"{folder}ms_all_batches_epoch_{epoch}")
#ms_per_batch_2 = torch.load(f"{folder_2}ms_all_batches_epoch_{epoch}")
loss
=
torch
.
load
(
f
"
{
folder
}
loss_epoch_
{
epoch
}
"
)
loss_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_epoch_
{
epoch
}
"
)
accuracy
=
torch
.
load
(
f
"
{
folder
}
accuracy_epoch_
{
epoch
}
"
)
accuracy_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_epoch_
{
epoch
}
"
)
loss_v_2
=
torch
.
load
(
f
"
{
folder
}
loss_v_2_epoch_
{
epoch
}
"
)
loss_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2
=
torch
.
load
(
f
"
{
folder
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_3
=
torch
.
load
(
f
"
{
folder
}
accuracy_v_3_epoch_
{
epoch
}
"
)
accuracy_v_3_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_3_epoch_
{
epoch
}
"
)
#with open(f"{folder}accuracy.txt", 'r') as fp:
# avg_prob_non_empty_pre = fp.read()
#avg_prob_non_empty_pre = avg_prob_non_empty_pre.split("\n")
#avg_prob_non_empty = [float(t) for t in avg_prob_non_empty_pre[:-1]]
if
version_1
:
plot_accuracy
(
accuracy
,
"
ET_accuracy
"
,
accuracy_2
,
"
ST_accuracy
"
,
accuracy_v_2
,
"
ET_accuracy_step
"
,
accuracy_v_2_2
,
"
ST_accuracy_step
"
,
accuracy_v_3
,
"
ET_accuracy_anystep
"
,
accuracy_v_3_2
,
"
ST_accuracy_anystep
"
,
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_accuracy_epoch_
{
epoch
}
.pdf
"
)
plot_ppl_loss
(
"
perplexity
"
,
ppl
,
"
ET_ppl
"
,
ppl_2
,
"
ST_ppl
"
,
ppl_v_2
,
"
ET_ppl_step
"
,
ppl_v_2_2
,
"
ST_ppl_step
"
,
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_ppl_epoch_
{
epoch
}
.pdf
"
)
#plot(ms_per_batch, "ms_per_batch", f"{args.save_folder}{approach}_ms_per_batch_epoch_{epoch}.pdf")
plot_ppl_loss
(
"
loss
"
,
loss
,
"
ET_loss
"
,
loss_2
,
"
ST_loss
"
,
loss_v_2
,
"
ET_loss_step
"
,
loss_v_2_2
,
"
ST_loss_step
"
,
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_loss_epoch_
{
epoch
}
.pdf
"
)
elif
version
==
"
version_1
"
:
#folder_given = "epoch_3_eval/Model_et_epoch_3_fraxtil"
folder_given
=
"
epoch_3_eval/thresholding_epoch_3_fraxtil
"
#folder_given = "epoch_3_eval/thresholding_epoch_3_fraxtil"
folder_given
=
"
combine_tokens_approach_2803_s_e_token_no_u_token
"
#folder_given = "Model_empty_token_approach_t_2"
#folder_given = "thresholding_2503_all_data_3_new_comb_t_100"
#folder_given = "Model_lrt_approach_without_thresholding_cpu"
#folder_given = "Model_lrt_approach_cpu"
#folder_given = "Model_lrt_approach_and_thresholding_cpu"
approach
=
"
Empty_token_approach_no_t
"
parser
=
setup_parser
(
folder_given
)
args
,
unknown
=
parser
.
parse_known_args
()
device
=
torch
.
device
(
'
cuda
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
...
...
@@ -143,13 +384,12 @@ if __name__ == '__main__':
#avg_prob_non_empty = [float(t) for t in avg_prob_non_empty_pre[:-1]]
plot_accuracy
(
accuracy
,
"
accuracy
"
,
accuracy_v_2
,
"
accuracy_
v_2
"
,
accuracy_v_3
,
"
accuracy_
v_3
"
,
f
"
{
folder
}
_accuracy_epoch_
{
epoch
}
.pdf
"
)
plot_ppl_loss
(
ppl
,
"
ppl
"
,
ppl_v_2
,
"
ppl_
v_2
"
,
f
"
{
folder
}
_ppl_epoch_
{
epoch
}
.pdf
"
)
plot
(
ms_per_batch
,
"
ms_per_batch
"
,
f
"
{
folder
}
_ms_per_batch_epoch_
{
epoch
}
.pdf
"
)
plot_ppl_loss
(
loss
,
"
loss
"
,
loss_v_2
,
"
loss_
v_2
"
,
f
"
{
folder
}
_loss_epoch_
{
epoch
}
.pdf
"
)
plot_accuracy
(
accuracy
,
"
accuracy
"
,
accuracy_v_2
,
"
accuracy_
step
"
,
accuracy_v_3
,
"
accuracy_
anystep
"
,
f
"
{
args
.
save_folder
}{
approach
}
_accuracy_epoch_
{
epoch
}
.pdf
"
)
plot_ppl_loss
(
"
perplexity
"
,
ppl
,
"
ppl
"
,
ppl_v_2
,
"
ppl_
step
"
,
f
"
{
args
.
save_folder
}{
approach
}
_ppl_epoch_
{
epoch
}
.pdf
"
)
plot
(
ms_per_batch
,
"
ms_per_batch
"
,
f
"
{
args
.
save_folder
}{
approach
}
_ms_per_batch_epoch_
{
epoch
}
.pdf
"
)
plot_ppl_loss
(
"
loss
"
,
loss
,
"
loss
"
,
loss_v_2
,
"
loss_
step
"
,
f
"
{
args
.
save_folder
}{
approach
}
_loss_epoch_
{
epoch
}
.pdf
"
)
else
:
elif
version
==
"
version_2
"
:
# version 2, per main approach, compare values such as accuracy, accuracy_v_2, ...
# naive approach
...
...
@@ -158,127 +398,164 @@ if __name__ == '__main__':
#folder_3_name = None
#approach = "naive_approach"
# single empty token approach, wrong ordering?
#folder_1_name = "combine_tokens_approach_2803_s_e_token_no_u_token"
#folder_2_name = "Model_empty_token_approach_t_2"
#folder_3_name = "thresholding_2503_all_data_3_new_comb_t_100"
#approach = "empty_approach"
folder_1_name
=
"
naive_approach_s_e_token_no_t
"
folder_2_name
=
"
Model_naive_approach_t_2
"
# folder_3_name = None
approach_1
=
"
naive
"
# empty approach
folder_
11
_name
=
"
combine_tokens_approach_2803_s_e_token_no_u_token
"
folder_
12
_name
=
"
Model_empty_token_approach_t_2
"
folder_
13
_name
=
"
thresholding_2503_all_data_3_new_comb_t_100
"
approach_
1
=
"
empty_approach
"
folder_
3
_name
=
"
combine_tokens_approach_2803_s_e_token_no_u_token
"
folder_
4
_name
=
"
Model_empty_token_approach_t_2
"
folder_
5
_name
=
"
thresholding_2503_all_data_3_new_comb_t_100
"
approach_
2
=
"
ET
"
#lrt approach
folder_1_name
=
"
Model_lrt_approach_without_thresholding_cpu
"
folder_2_name
=
"
Model_lrt_approach_cpu
"
folder_3_name
=
"
Model_lrt_approach_and_thresholding_cpu
"
approach
=
"
lrt
"
folder_6_name
=
"
Model_lrt_approach_without_thresholding_cpu
"
folder_7_name
=
"
Model_lrt_approach_cpu
"
folder_8_name
=
"
Model_lrt_approach_and_thresholding_cpu
"
approach_3
=
"
ST
"
# for single approach
#approach_1 = None
#folder_11_name = None
#folder_12_name = None
#folder_13_name = None
#parser = setup_parser(folder_1_name, folder_2_name, folder_3_name)
parser
=
setup_parser
(
folder_11_name
,
folder_12_name
,
folder_13_name
,
folder_1_name
,
folder_2_name
,
folder_3_name
)
save_folder
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_1_models_v_2/all_2/
'
folder_1
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_1_name
}
/
'
folder_2
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_2_name
}
/
'
folder_3
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_3_name
}
/
'
folder_4
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_4_name
}
/
'
folder_5
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_5_name
}
/
'
folder_6
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_6_name
}
/
'
folder_7
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_7_name
}
/
'
folder_8
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/
{
folder_8_name
}
/
'
#parser = setup_parser(folder_11_name, folder_12_name, folder_13_name, folder_1_name, folder_2_name, folder_3_name)
#parser = setup_parser(folder_1, folder_2, folder_3)
args
,
unknown
=
parser
.
parse_known_args
()
os
.
makedirs
(
args
.
save_folder
,
exist_ok
=
True
)
#
args, unknown = parser.parse_known_args()
os
.
makedirs
(
save_folder
,
exist_ok
=
True
)
device
=
torch
.
device
(
'
cuda
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
folder
=
args
.
folder
folder_2
=
args
.
folder_2
if
folder_3_name
is
None
:
folder_3
=
None
else
:
folder_3
=
args
.
folder_3
if
folder_11_name
is
None
:
folder_11
=
None
else
:
folder_11
=
args
.
folder_11
if
folder_12_name
is
None
:
folder_12
=
None
else
:
folder_12
=
args
.
folder_12
if
folder_13_name
is
None
:
folder_13
=
None
else
:
folder_13
=
args
.
folder_13
save_folder
=
args
.
save_folder
#folder_3 = args.folder_3
epoch
=
3
ppl
=
torch
.
load
(
f
"
{
folder
}
ppl_batches_epoch_
{
epoch
}
"
)
epoch
=
1
ppl_1
=
torch
.
load
(
f
"
{
folder_1
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
ppl_3
=
torch
.
load
(
f
"
{
folder_3
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
ppl_11
=
torch
.
load
(
f
"
{
folder_11
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
ppl_12
=
torch
.
load
(
f
"
{
folder_12
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
ppl_13
=
torch
.
load
(
f
"
{
folder_13
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_v_2
=
torch
.
load
(
f
"
{
folder
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
ppl_4
=
torch
.
load
(
f
"
{
folder_4
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
ppl_5
=
torch
.
load
(
f
"
{
folder_5
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
ppl_6
=
torch
.
load
(
f
"
{
folder_6
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
ppl_7
=
torch
.
load
(
f
"
{
folder_7
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
ppl_8
=
torch
.
load
(
f
"
{
folder_8
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_v_2_1
=
torch
.
load
(
f
"
{
folder_1
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
ppl_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
ppl_v_2_3
=
torch
.
load
(
f
"
{
folder_3
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
ppl_v_2_11
=
torch
.
load
(
f
"
{
folder_11
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
ppl_v_2_12
=
torch
.
load
(
f
"
{
folder_12
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
ppl_v_2_13
=
torch
.
load
(
f
"
{
folder_13
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
ppl_v_2_4
=
torch
.
load
(
f
"
{
folder_4
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
ppl_v_2_5
=
torch
.
load
(
f
"
{
folder_5
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
ppl_v_2_6
=
torch
.
load
(
f
"
{
folder_6
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
ppl_v_2_7
=
torch
.
load
(
f
"
{
folder_7
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
ppl_v_2_8
=
torch
.
load
(
f
"
{
folder_8
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
#ms_per_batch = torch.load(f"{folder}ms_all_batches_epoch_{epoch}")
#ms_per_batch_2 = torch.load(f"{folder_2}ms_all_batches_epoch_{epoch}")
#ms_per_batch_3 = torch.load(f"{folder_3}ms_all_batches_epoch_{epoch}")
loss
=
torch
.
load
(
f
"
{
folder
}
loss_epoch_
{
epoch
}
"
)
loss
_1
=
torch
.
load
(
f
"
{
folder
_1
}
loss_epoch_
{
epoch
}
"
)
loss_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
loss_3
=
torch
.
load
(
f
"
{
folder_3
}
loss_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
loss_11
=
torch
.
load
(
f
"
{
folder_11
}
loss_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
loss_12
=
torch
.
load
(
f
"
{
folder_12
}
loss_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
loss_13
=
torch
.
load
(
f
"
{
folder_13
}
loss_epoch_
{
epoch
}
"
)
accuracy
=
torch
.
load
(
f
"
{
folder
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
loss_4
=
torch
.
load
(
f
"
{
folder_4
}
loss_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
loss_5
=
torch
.
load
(
f
"
{
folder_5
}
loss_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
loss_6
=
torch
.
load
(
f
"
{
folder_6
}
loss_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
loss_7
=
torch
.
load
(
f
"
{
folder_7
}
loss_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
loss_8
=
torch
.
load
(
f
"
{
folder_8
}
loss_epoch_
{
epoch
}
"
)
accuracy_1
=
torch
.
load
(
f
"
{
folder_1
}
accuracy_epoch_
{
epoch
}
"
)
accuracy_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
accuracy_3
=
torch
.
load
(
f
"
{
folder_3
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
accuracy_11
=
torch
.
load
(
f
"
{
folder_11
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
accuracy_12
=
torch
.
load
(
f
"
{
folder_12
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
accuracy_13
=
torch
.
load
(
f
"
{
folder_13
}
accuracy_epoch_
{
epoch
}
"
)
loss_v_2
=
torch
.
load
(
f
"
{
folder
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
accuracy_4
=
torch
.
load
(
f
"
{
folder_4
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
accuracy_5
=
torch
.
load
(
f
"
{
folder_5
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
accuracy_6
=
torch
.
load
(
f
"
{
folder_6
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
accuracy_7
=
torch
.
load
(
f
"
{
folder_7
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
accuracy_8
=
torch
.
load
(
f
"
{
folder_8
}
accuracy_epoch_
{
epoch
}
"
)
loss_v_2_1
=
torch
.
load
(
f
"
{
folder_1
}
loss_v_2_epoch_
{
epoch
}
"
)
loss_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
loss_v_2_3
=
torch
.
load
(
f
"
{
folder_3
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
loss_v_2_11
=
torch
.
load
(
f
"
{
folder_11
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
loss_v_2_12
=
torch
.
load
(
f
"
{
folder_12
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
loss_v_2_13
=
torch
.
load
(
f
"
{
folder_13
}
loss_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2
=
torch
.
load
(
f
"
{
folder
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
loss_v_2_4
=
torch
.
load
(
f
"
{
folder_4
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
loss_v_2_5
=
torch
.
load
(
f
"
{
folder_5
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
loss_v_2_6
=
torch
.
load
(
f
"
{
folder_6
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
loss_v_2_7
=
torch
.
load
(
f
"
{
folder_7
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
loss_v_2_8
=
torch
.
load
(
f
"
{
folder_8
}
loss_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2_1
=
torch
.
load
(
f
"
{
folder_1
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
accuracy_v_2_3
=
torch
.
load
(
f
"
{
folder_3
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
accuracy_v_2_11
=
torch
.
load
(
f
"
{
folder_11
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
accuracy_v_2_12
=
torch
.
load
(
f
"
{
folder_12
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
accuracy_v_2_13
=
torch
.
load
(
f
"
{
folder_13
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_3
=
torch
.
load
(
f
"
{
folder
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
accuracy_v_2_4
=
torch
.
load
(
f
"
{
folder_4
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
accuracy_v_2_5
=
torch
.
load
(
f
"
{
folder_5
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
accuracy_v_2_6
=
torch
.
load
(
f
"
{
folder_6
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
accuracy_v_2_7
=
torch
.
load
(
f
"
{
folder_7
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
accuracy_v_2_8
=
torch
.
load
(
f
"
{
folder_8
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_3_1
=
torch
.
load
(
f
"
{
folder_1
}
accuracy_v_3_epoch_
{
epoch
}
"
)
accuracy_v_3_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
accuracy_v_3_3
=
torch
.
load
(
f
"
{
folder_3
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_11
is
not
None
:
accuracy_v_3_11
=
torch
.
load
(
f
"
{
folder_11
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_12
is
not
None
:
accuracy_v_3_12
=
torch
.
load
(
f
"
{
folder_12
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_13
is
not
None
:
accuracy_v_3_13
=
torch
.
load
(
f
"
{
folder_13
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
accuracy_v_3_4
=
torch
.
load
(
f
"
{
folder_4
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_5
is
not
None
:
accuracy_v_3_5
=
torch
.
load
(
f
"
{
folder_5
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_6
is
not
None
:
accuracy_v_3_6
=
torch
.
load
(
f
"
{
folder_6
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_7
is
not
None
:
accuracy_v_3_7
=
torch
.
load
(
f
"
{
folder_7
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_8
is
not
None
:
accuracy_v_3_8
=
torch
.
load
(
f
"
{
folder_8
}
accuracy_v_3_epoch_
{
epoch
}
"
)
# with open(f"{folder}accuracy.txt", 'r') as fp:
# avg_prob_non_empty_pre = fp.read()
...
...
@@ -287,71 +564,174 @@ if __name__ == '__main__':
# avg_prob_non_empty = [float(t) for t in avg_prob_non_empty_pre[:-1]]
# other variant
if
approach_1
is
not
None
:
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_accuracy_epoch_
{
epoch
}
.pdf
"
,
accuracy_11
,
"
et_accuracy
"
,
accuracy_12
,
"
et_accuracy_t_2
"
,
accuracy_13
,
"
et_accuracy_t_100
"
,
accuracy
,
"
lrt_accuracy
"
,
accuracy_2
,
"
lrt_accuracy_t_2
"
,
accuracy_3
,
"
lrt_accuracy_t_100
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_accuracy_v_2_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_2_11
,
"
et_accuracy
"
,
accuracy_v_2_12
,
"
et_accuracy_t_2
"
,
accuracy_v_2_13
,
"
et_accuracy_t_100
"
,
accuracy_v_2
,
"
lrt_accuracy
"
,
accuracy_v_2_2
,
"
lrt_accuracy_t_2
"
,
accuracy_v_2_3
,
"
lrt_accuracy_t_100
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_accuracy_v_3_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_3_11
,
"
et_accuracy
"
,
accuracy_v_3_12
,
"
et_accuracy_t_2
"
,
accuracy_v_3_13
,
"
et_accuracy_t_100
"
,
accuracy_v_3
,
"
lrt_accuracy
"
,
accuracy_v_3_2
,
"
lrt_accuracy_t_2
"
,
accuracy_v_3_3
,
"
lrt_accuracy_t_100
"
)
elif
folder_3
is
not
None
:
#if approach_2 is not None:
plot_accuracy_1
(
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_accuracy_epoch_
{
epoch
}
.pdf
"
,
"
accuracy
"
,
accuracy_1
,
"
naive
"
,
accuracy_2
,
"
naive_t_2
"
,
accuracy_3
,
"
et
"
,
accuracy_4
,
"
et_t_2
"
,
accuracy_5
,
"
et_t_100
"
,
accuracy_6
,
"
st
"
,
accuracy_7
,
"
st_t_2
"
,
accuracy_8
,
"
st_t_100
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_accuracy_v_2_epoch_
{
epoch
}
.pdf
"
,
"
accuracy_step
"
,
accuracy_v_2_1
,
"
naive
"
,
accuracy_v_2_2
,
"
naive_t_2
"
,
accuracy_v_2_3
,
"
et
"
,
accuracy_v_2_4
,
"
et_t_2
"
,
accuracy_v_2_5
,
"
et_t_100
"
,
accuracy_v_2_6
,
"
st
"
,
accuracy_v_2_7
,
"
st_t_2
"
,
accuracy_v_2_8
,
"
st_t_100
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_accuracy_v_3_epoch_
{
epoch
}
.pdf
"
,
"
accuracy_anystep
"
,
accuracy_v_3_1
,
"
naive
"
,
accuracy_v_3_2
,
"
naive_t_2
"
,
accuracy_v_3_3
,
"
et
"
,
accuracy_v_3_4
,
"
et_t_2
"
,
accuracy_v_3_5
,
"
et_t_100
"
,
accuracy_v_3_6
,
"
st
"
,
accuracy_v_3_7
,
"
st_t_2
"
,
accuracy_v_3_8
,
"
st_t_100
"
)
# elif folder_3 is not None:
# plot_accuracy_1(f"{save_folder}{approach}_accuracy_epoch_{epoch}.pdf",
# accuracy, "accuracy", accuracy_2, "accuracy_t_2", accuracy_3, "accuracy_t_100")
# plot_accuracy_1(f"{save_folder}{approach}_accuracy_v_2_epoch_{epoch}.pdf",
# accuracy_v_2, "accuracy_step", accuracy_v_2_2, "accuracy_step_t_2", accuracy_v_2_3, "accuracy_step_t_100")
# plot_accuracy_1(f"{save_folder}{approach}_accuracy_v_3_epoch_{epoch}.pdf",
# accuracy_v_3, "accuracy_anystep", accuracy_v_3_2, "accuracy_anystep_t_2", accuracy_v_3_3, "accuracy_anystep_t_100")
# else:
# plot_accuracy_1(f"{save_folder}{approach}_accuracy_epoch_{epoch}.pdf",
# accuracy, "accuracy", accuracy_2, "accuracy_t_2")
#
# plot_accuracy_1(f"{save_folder}{approach}_accuracy_v_2_epoch_{epoch}.pdf",
# accuracy_v_2, "accuracy_step", accuracy_v_2_2, "accuracy_step_t_2")
#
# plot_accuracy_1(f"{save_folder}{approach}_accuracy_v_3_epoch_{epoch}.pdf",
# accuracy_v_3, "accuracy_anystep", accuracy_v_3_2, "accuracy_anystep_t_2")
# other variant
#if approach_1 is not None:
plot_ppl_loss_1
(
"
loss
"
,
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_loss_epoch_
{
epoch
}
.pdf
"
,
loss_1
,
"
naive
"
,
loss_2
,
"
naive_t_2
"
,
loss_3
,
"
et
"
,
loss_4
,
"
et_t_2
"
,
loss_5
,
"
et_t_100
"
,
loss_6
,
"
st
"
,
loss_7
,
"
st_t_2
"
,
loss_8
,
"
st_t_100
"
)
plot_ppl_loss_1
(
"
loss_step
"
,
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_loss_v_2_epoch_
{
epoch
}
.pdf
"
,
loss_v_2_1
,
"
naive
"
,
loss_v_2_2
,
"
naive_t_2
"
,
loss_v_2_3
,
"
et
"
,
loss_v_2_4
,
"
et_t_2
"
,
loss_v_2_5
,
"
et_t_100
"
,
loss_v_2_6
,
"
st
"
,
loss_v_2_7
,
"
st_t_2
"
,
loss_v_2_8
,
"
st_t_100
"
)
plot_ppl_loss_1
(
"
perplexity
"
,
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_ppl_epoch_
{
epoch
}
.pdf
"
,
ppl_1
,
"
naive
"
,
ppl_2
,
"
naive_t_2
"
,
ppl_3
,
"
et
"
,
ppl_4
,
"
et_t_2
"
,
ppl_5
,
"
et_t_100
"
,
ppl_6
,
"
st
"
,
ppl_7
,
"
st_t_2
"
,
ppl_8
,
"
st_t_100
"
)
plot_ppl_loss_1
(
"
perplexity_step
"
,
f
"
{
save_folder
}{
approach_1
}
_
{
approach_2
}
_
{
approach_3
}
_ppl_v_2_epoch_
{
epoch
}
.pdf
"
,
ppl_v_2_1
,
"
naive
"
,
ppl_v_2_2
,
"
naive_t_2
"
,
ppl_v_2_3
,
"
et
"
,
ppl_v_2_4
,
"
et_t_2
"
,
ppl_v_2_5
,
"
et_t_100
"
,
ppl_v_2_6
,
"
st
"
,
ppl_v_2_7
,
"
st_t_2
"
,
ppl_v_2_8
,
"
st_t_100
"
)
# elif folder_3 is not None:
# plot_ppl_loss_1("loss", f"{save_folder}{approach}_loss_epoch_{epoch}.pdf",
# loss, "loss", loss_2, "loss_t_2", loss_3, "loss_t_100")
# plot_ppl_loss_1("loss", f"{save_folder}{approach}_loss_v_2_epoch_{epoch}.pdf",
# loss_v_2, "loss_step", loss_v_2_2, "loss_step_t_2", loss_v_2_3, "loss_step_t_100")
# plot_ppl_loss_1("perplexity", f"{save_folder}{approach}_ppl_epoch_{epoch}.pdf",
# ppl, "ppl", ppl_2, "ppl_t_2", ppl_3, "ppl_t_100")
# plot_ppl_loss_1("perplexity", f"{save_folder}{approach}_ppl_v_2_epoch_{epoch}.pdf",
# ppl_v_2, "ppl_step", ppl_v_2_2, "ppl_step_t_2", ppl_v_2_3, "ppl_step_t_100")
# else:
# plot_ppl_loss_1("loss", f"{save_folder}{approach}_loss_epoch_{epoch}.pdf",
# loss, "loss", loss_2, "loss_t_2")
# plot_ppl_loss_1("loss", f"{save_folder}{approach}_loss_v_2_epoch_{epoch}.pdf",
# loss_v_2, "loss_step", loss_v_2_2, "loss_step_t_2")
#
# plot_ppl_loss_1("perplexity", f"{save_folder}{approach}_ppl_epoch_{epoch}.pdf",
# ppl, "ppl", ppl_2, "ppl_t_2")
# plot_ppl_loss_1("perplexity", f"{save_folder}{approach}_ppl_v_2_epoch_{epoch}.pdf",
# ppl_v_2, "ppl_step", ppl_v_2_2, "ppl_step_t_2")
elif
version
==
"
version_3
"
:
# test set für alle 4 approaches et_t_2, et_t_100, st_t_2, st_t_100
save_folder
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_3_eval/fraxtil/
'
folder_1
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_3_eval/fraxtil/Model_et_epoch_3_fraxtil/
'
folder_2
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_3_eval/fraxtil/thresholding_epoch_3_fraxtil/
'
folder_3
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_3_eval/fraxtil/Model_lrt_approach_epoch_3_farxtil/
'
folder_4
=
f
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/epoch_3_eval/fraxtil/Model_lrt_approach_and_thesholding_epoch_3_fraxtil/
'
approach
=
"
all_models_fraxtil
"
epoch
=
1
ppl
=
torch
.
load
(
f
"
{
folder_1
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
ppl_3
=
torch
.
load
(
f
"
{
folder_3
}
ppl_batches_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
ppl_4
=
torch
.
load
(
f
"
{
folder_4
}
ppl_batches_epoch_
{
epoch
}
"
)
ppl_v_2
=
torch
.
load
(
f
"
{
folder_1
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
ppl_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
ppl_v_2_3
=
torch
.
load
(
f
"
{
folder_3
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
ppl_v_2_4
=
torch
.
load
(
f
"
{
folder_4
}
ppl_v_2_batches_epoch_
{
epoch
}
"
)
loss
=
torch
.
load
(
f
"
{
folder_1
}
loss_epoch_
{
epoch
}
"
)
loss_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
loss_3
=
torch
.
load
(
f
"
{
folder_3
}
loss_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
loss_4
=
torch
.
load
(
f
"
{
folder_4
}
loss_epoch_
{
epoch
}
"
)
accuracy
=
torch
.
load
(
f
"
{
folder_1
}
accuracy_epoch_
{
epoch
}
"
)
accuracy_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
accuracy_3
=
torch
.
load
(
f
"
{
folder_3
}
accuracy_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
accuracy_4
=
torch
.
load
(
f
"
{
folder_4
}
accuracy_epoch_
{
epoch
}
"
)
loss_v_2
=
torch
.
load
(
f
"
{
folder_1
}
loss_v_2_epoch_
{
epoch
}
"
)
loss_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
loss_v_2_3
=
torch
.
load
(
f
"
{
folder_3
}
loss_v_2_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
loss_v_2_4
=
torch
.
load
(
f
"
{
folder_4
}
loss_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2
=
torch
.
load
(
f
"
{
folder_1
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_2_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
accuracy_v_2_3
=
torch
.
load
(
f
"
{
folder_3
}
accuracy_v_2_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
accuracy_v_2_4
=
torch
.
load
(
f
"
{
folder_4
}
accuracy_v_2_epoch_
{
epoch
}
"
)
accuracy_v_3
=
torch
.
load
(
f
"
{
folder_1
}
accuracy_v_3_epoch_
{
epoch
}
"
)
accuracy_v_3_2
=
torch
.
load
(
f
"
{
folder_2
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
accuracy_v_3_3
=
torch
.
load
(
f
"
{
folder_3
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_4
is
not
None
:
accuracy_v_3_4
=
torch
.
load
(
f
"
{
folder_4
}
accuracy_v_3_epoch_
{
epoch
}
"
)
if
folder_3
is
not
None
:
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_accuracy_epoch_
{
epoch
}
.pdf
"
,
accuracy
,
"
accuracy
"
,
accuracy_2
,
"
accuracy_t_2
"
,
accuracy_3
,
"
accuracy_t_100
"
)
accuracy
,
"
accuracy_et_t_2
"
,
accuracy_2
,
"
accuracy_et_t_100
"
,
accuracy_3
,
"
accuracy_st_t_2
"
,
accuracy_4
,
"
accuracy_st_t_100
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_accuracy_v_2_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_2
,
"
accuracy
"
,
accuracy_v_2_2
,
"
accuracy_t_2
"
,
accuracy_v_2_3
,
"
accuracy_t_100
"
)
accuracy_v_2
,
"
accuracy_step_et_t_2
"
,
accuracy_v_2_2
,
"
accuracy_step_et_t_100
"
,
accuracy_v_2_3
,
"
accuracy_step_st_t_2
"
,
accuracy_v_2_4
,
"
accuracy_step_st_t_100
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_accuracy_v_3_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_3
,
"
accuracy
"
,
accuracy_v_3_2
,
"
accuracy_t_2
"
,
accuracy_v_3_3
,
"
accuracy_t_100
"
)
accuracy_v_3
,
"
accuracy_anystep_et_t_2
"
,
accuracy_v_3_2
,
"
accuracy_anystep_et_t_100
"
,
accuracy_v_3_3
,
"
accuracy_anystep_st_t_2
"
,
accuracy_v_3_4
,
"
accuracy_anystep_st_t_100
"
)
plot_ppl_loss_1
(
"
loss
"
,
f
"
{
save_folder
}{
approach
}
_loss_epoch_
{
epoch
}
.pdf
"
,
loss
,
"
loss_et_t_2
"
,
loss_2
,
"
loss_et_t_100
"
,
loss_3
,
"
loss_st_t_2
"
,
loss_4
,
"
loss_st_t_100
"
)
plot_ppl_loss_1
(
"
loss
"
,
f
"
{
save_folder
}{
approach
}
_loss_v_2_epoch_
{
epoch
}
.pdf
"
,
loss_v_2
,
"
loss_step_et_t_2
"
,
loss_v_2_2
,
"
loss_step_et_t_100
"
,
loss_v_2_3
,
"
loss_step_st_t_2
"
,
loss_v_2_4
,
"
loss_step_st_t_100
"
)
plot_ppl_loss_1
(
"
perplexity
"
,
f
"
{
save_folder
}{
approach
}
_ppl_epoch_
{
epoch
}
.pdf
"
,
ppl
,
"
ppl_et_t_2
"
,
ppl_2
,
"
ppl_et_t_100
"
,
ppl_3
,
"
ppl_st_t_2
"
,
ppl_4
,
"
ppl_st_t_100
"
)
plot_ppl_loss_1
(
"
perplexity
"
,
f
"
{
save_folder
}{
approach
}
_ppl_v_2_epoch_
{
epoch
}
.pdf
"
,
ppl_v_2
,
"
ppl_step_et_t_2
"
,
ppl_v_2_2
,
"
ppl_step_et_t_100
"
,
ppl_v_2_3
,
"
ppl_step_st_t_2
"
,
ppl_v_2_4
,
"
ppl_step_st_t_100
"
)
else
:
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_accuracy_epoch_
{
epoch
}
.pdf
"
,
accuracy
,
"
accuracy
"
,
accuracy_2
,
"
accuracy_t_2
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_accuracy_v_2_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_2
,
"
accuracy
"
,
accuracy_v_2_2
,
"
accuracy_t_2
"
)
accuracy_v_2
,
"
accuracy_step
"
,
accuracy_v_2_2
,
"
accuracy_step_t_2
"
)
plot_accuracy_1
(
f
"
{
save_folder
}{
approach
}
_accuracy_v_3_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_3
,
"
accuracy
"
,
accuracy_v_3_2
,
"
accuracy_t_2
"
)
# other variant
if
approach_1
is
not
None
:
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_loss_epoch_
{
epoch
}
.pdf
"
,
loss_11
,
"
et_loss
"
,
loss_12
,
"
et_loss_t_2
"
,
loss_13
,
"
et_loss_t_100
"
,
loss
,
"
lrt_loss
"
,
loss_2
,
"
lrt_loss_t_2
"
,
loss_3
,
"
lrt_loss_t_100
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_loss_v_2_epoch_
{
epoch
}
.pdf
"
,
loss_v_2_11
,
"
et_loss
"
,
loss_v_2_12
,
"
et_loss_t_2
"
,
loss_v_2_13
,
"
et_loss_t_100
"
,
loss_v_2
,
"
lrt_loss
"
,
loss_v_2_2
,
"
lrt_loss_t_2
"
,
loss_v_2_3
,
"
lrt_loss_t_100
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_ppl_epoch_
{
epoch
}
.pdf
"
,
ppl_11
,
"
et_ppl
"
,
ppl_12
,
"
et_ppl_t_2
"
,
ppl_13
,
"
et_ppl_t_100
"
,
ppl
,
"
lrt_ppl
"
,
ppl_2
,
"
lrt_ppl_t_2
"
,
ppl_3
,
"
lrt_ppl_t_100
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_
{
approach_1
}
_ppl_v_2_epoch_
{
epoch
}
.pdf
"
,
ppl_v_2_11
,
"
et_ppl
"
,
ppl_v_2_12
,
"
et_ppl_t_2
"
,
ppl_v_2_13
,
"
et_ppl_t_100
"
,
ppl_v_2
,
"
lrt_ppl
"
,
ppl_v_2_2
,
"
lrt_ppl_t_2
"
,
ppl_v_2_3
,
"
lrt_ppl_t_100
"
)
elif
folder_3
is
not
None
:
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_loss_epoch_
{
epoch
}
.pdf
"
,
loss
,
"
loss
"
,
loss_2
,
"
loss_t_2
"
,
loss_3
,
"
loss_t_100
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_loss_v_2_epoch_
{
epoch
}
.pdf
"
,
loss_v_2
,
"
loss
"
,
loss_v_2_2
,
"
loss_t_2
"
,
loss_v_2_3
,
"
loss_t_100
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_ppl_epoch_
{
epoch
}
.pdf
"
,
ppl
,
"
ppl
"
,
ppl_2
,
"
ppl_t_2
"
,
ppl_3
,
"
ppl_t_100
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_ppl_v_2_epoch_
{
epoch
}
.pdf
"
,
ppl_v_2
,
"
ppl
"
,
ppl_v_2_2
,
"
ppl_t_2
"
,
ppl_v_2_3
,
"
ppl_t_100
"
)
else
:
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_loss_epoch_
{
epoch
}
.pdf
"
,
accuracy_v_3
,
"
accuracy_anystep
"
,
accuracy_v_3_2
,
"
accuracy_anystep_t_2
"
)
plot_ppl_loss_1
(
"
loss
"
,
f
"
{
save_folder
}{
approach
}
_loss_epoch_
{
epoch
}
.pdf
"
,
loss
,
"
loss
"
,
loss_2
,
"
loss_t_2
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_loss_v_2_epoch_
{
epoch
}
.pdf
"
,
loss_v_2
,
"
loss
"
,
loss_v_2_2
,
"
loss_t_2
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_ppl_epoch_
{
epoch
}
.pdf
"
,
plot_ppl_loss_1
(
"
loss
"
,
f
"
{
save_folder
}{
approach
}
_loss_v_2_epoch_
{
epoch
}
.pdf
"
,
loss_v_2
,
"
loss_step
"
,
loss_v_2_2
,
"
loss_step_t_2
"
)
plot_ppl_loss_1
(
"
perplexity
"
,
f
"
{
save_folder
}{
approach
}
_ppl_epoch_
{
epoch
}
.pdf
"
,
ppl
,
"
ppl
"
,
ppl_2
,
"
ppl_t_2
"
)
plot_ppl_loss_1
(
f
"
{
save_folder
}{
approach
}
_ppl_v_2_epoch_
{
epoch
}
.pdf
"
,
ppl_v_2
,
"
ppl
"
,
ppl_v_2_2
,
"
ppl_t_2
"
)
plot_ppl_loss_1
(
"
perplexity
"
,
f
"
{
save_folder
}{
approach
}
_ppl_v_2_epoch_
{
epoch
}
.pdf
"
,
ppl_v_2
,
"
ppl_step
"
,
ppl_v_2_2
,
"
ppl_step_t_2
"
)
...
...
This diff is collapsed.
Click to expand it.
visualize_matrix.py
0 → 100644
+
35
−
0
View file @
c194bbbf
from
sklearn.metrics
import
confusion_matrix
import
seaborn
as
sn
import
pandas
as
pd
import
numpy
as
np
import
matplotlib.pyplot
as
plt
#y_pred = []
#y_true = []
# iterate over test data
#for inputs, labels in testloader:
# output = net(inputs) # Feed Network
# output = (torch.max(torch.exp(output), 1)[1]).data.cpu().numpy()
# y_pred.extend(output) # Save Prediction
# labels = labels.data.cpu().numpy()
# y_true.extend(labels) # Save Truth
# constant for classes
classes
=
(
'
empty
'
,
'
non empty
'
)
# Build confusion matrix
#cf_matrix = confusion_matrix(y_true, y_pred)
cf_matrix
=
[[
26715
,
0
],
[
1038
,
0
]]
#cf_matrix = [[2461, 404], [201, 949]]
df_cm
=
pd
.
DataFrame
(
cf_matrix
/
np
.
sum
(
cf_matrix
,
axis
=
1
)[:,
None
],
index
=
[
i
for
i
in
classes
],
columns
=
[
i
for
i
in
classes
])
plt
.
figure
(
figsize
=
(
12
,
7
))
sn
.
set
(
font_scale
=
2.0
)
sn
.
heatmap
(
df_cm
,
annot
=
True
,
annot_kws
=
{
'
size
'
:
25
})
plt
.
savefig
(
'
C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/confusion_matrix_naive_no_t.pdf
'
)
#plt.savefig('C:/Users/cassi/OneDrive/Desktop/Master_Thesis/master_thesis/confusion_matrix_step_prediction_testing_et.pdf')
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment