Newer
Older
import numpy as np
import os
from geomdl import exchange
import time
import surface_geom_SEM as sgs
import element_stiff_matrix as esm
import global_stiff_matrix as gsm
import global_load_vector_uniform as glv
import global_load_uni_lineload as glineloadv
#INPUT *************************************************************
u_analytic = 0.942
elastic_modulus = 1000
nu = 0.
thk =0.001
bc_h_bott = [0, 0, 0, 0, 0] # zero means clamped DOF
bc_h_top = [1, 1, 1, 1, 1]
bc_v_left = [1, 1, 1, 1, 1]
bc_v_right = [1, 1, 1, 1, 1]
loaded_side = ['top'] # line load is applied in which side in uv space
left_lineload = [0.1*thk**3, 0, 0] #load values in global x, y, z directions
right_lineload = [0.1*thk**3, 0, 0]
bottom_lineload = [0.1*thk**3, 0, 0]
top_lineload = [0.1*thk**3, 0, 0]
#*************************************************************
# os.system('cls')
print("\nImporting Lobatto points and weights from data-base ...")
# time.sleep(1)
lobatto_pw_all = esm.lbto_pw("node_weight_all.dat")
print("\nImporting geometry from json file ...")
# time.sleep(1)
data = exchange.import_json("curved_beam_lineload_2.json") # curved_beam_lineload_2_kninsertion curved_beam_lineload_2 pinched_shell_kninsertion_changedeg.json pinched_shell.json rectangle_cantilever square square_kninsertion generic_shell_kninsertion foursided_curved_kninsertion foursided_curved_kninsertion2 rectangle_kninsertion
# visualization(data)
surfs = sgs.SurfaceGeo(data, 0, thk)
# p_1 = surfs.physical_crd(0., 0.)
# p_2 = surfs.physical_crd(1., 0.)
# p_3 = surfs.physical_crd(1., 1.)
# print("p_1:", p_1, " p_2:", p_2, " p_3:", p_3)
print("\nSelecting the type of refinement: \nPlease enter 'p' for p_refinement and 'h' for h_refinement")
refine_type = input()
# p_1 = surfs.physical_crd(0., 0.)
# p_2 = surfs.physical_crd(1., 0.)
# p_3 = surfs.physical_crd(1., 1.)
# print("p_1:", p_1, " p_2:", p_2, " p_3:", p_3)
if refine_type =="p":
min_order_elem = int(input("\nEnter the minimum order of elements (max order = 30):\n"))
max_order_elem = int(input("Enter the maximum order of elements:\n"))
num_elem_u_auto = int(input("\nEnter the number of elements in u direction:\n"))
num_elem_v_auto = int(input("Enter the number of elements in v direction:\n"))
print("\nEnter the order of continuity at knots to be used for auto detection of elements boundaries in u direction ...")
print("The default value is '1'")
c_order_u =int(input())
print("Enter the order of continuity at knots to be used for auto detection of elements boundaries in v direction ...")
print("The default value is '1'")
c_order_v =int(input())
u_manual = np.linspace(0, 1, num_elem_u_auto + 1) #np.linspace(a, b, c) divide line bc to c-1 parts or add c points to it.
v_manual = np.linspace(0, 1, num_elem_v_auto + 1)
print("\nProgram starts to autodetect the element boundaries and generate mesh ...")
mesh = gsm.mesh_func(surfs, u_manual, v_manual, c_order_u, c_order_v)
element_boundaries_u = mesh[0]
element_boundaries_v = mesh[1]
order_displm_array = np.zeros((max_order_elem - min_order_elem + 1, 2))
time_assembling = np.zeros((max_order_elem - min_order_elem + 1, 2))
time_solver = np.zeros((max_order_elem - min_order_elem + 1, 2))
dof_displm_array = np.zeros((max_order_elem - min_order_elem + 1, 2)) ######################################
dof_time_assembling = np.zeros((max_order_elem - min_order_elem + 1, 2)) ######################################
dof_time_solver = np.zeros((max_order_elem - min_order_elem + 1, 2)) ######################################
cond_elem =np.zeros((max_order_elem - min_order_elem + 1, 2))
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
order_counter = 0
i_main = min_order_elem
while i_main <= max_order_elem:
if i_main == 1:
lobatto_pw = lobatto_pw_all[1:3,:]
else:
index = np.argwhere(lobatto_pw_all==i_main)
lobatto_pw = lobatto_pw_all[index[0, 0] + 1:\
index[0, 0] + (i_main+1) +1, :]
bc = gsm.global_boundary_condition(lobatto_pw, bc_h_bott, bc_h_top,\
bc_v_left, bc_v_right, element_boundaries_u,\
element_boundaries_v)
print("\n\n\nOrder of elements: {}".format(str(i_main)))
print("\nAssembling global stiffness matrix ...")
t_1_assembling = time.perf_counter()
k_global = gsm.global_stiffness_matrix(surfs, lobatto_pw, \
element_boundaries_u, element_boundaries_v, elastic_modulus, nu)
t_2_assembling = time.perf_counter()
k_global_bc = esm.stiffness_matrix_bc_applied(k_global, bc)
print("\nAssembling global load vector ...")
global_load = glineloadv.global_lineload_vector(surfs, lobatto_pw, \
loaded_side, left_lineload, right_lineload, \
bottom_lineload, top_lineload, element_boundaries_u, \
element_boundaries_v)
global_load_bc = np.delete(global_load, bc, 0)
# print('bc:', bc)
# print(global_load_bc)
print("\nLinear solver in action! ...")
t_1_solver = time.perf_counter()
d = np.linalg.solve(k_global_bc, global_load_bc)
# print(np.sum(global_load_bc))
t_2_solver = time.perf_counter()
n_dimension = k_global.shape[0]
displm_compelete = np.zeros(n_dimension)
i = 0
j = 0
while i < n_dimension:
if i in bc:
i += 1
else:
displm_compelete[i] = d[j]
i += 1
j += 1
number_lobatto_node = lobatto_pw.shape[0]
number_element_u = len(element_boundaries_u) - 1
number_element_v = len(element_boundaries_v) - 1
number_node_one_row = number_element_u*(number_lobatto_node - 1) + 1
number_node_one_column = number_element_v*(number_lobatto_node - 1) + 1
node_global_a = 1 # u = v = 0 . Four nodes at the tips of the square in u-v parametric space
node_global_b = node_global_a + number_node_one_row - 1
node_global_c = node_global_a + number_element_v*(number_lobatto_node-1)\
*number_node_one_row # u = 0, v = 1
if i_main%2 ==0:
mid_point = int(node_global_a + \
(i_main/2) * number_node_one_row)
else:
mid_point = int(node_global_a + \
((i_main+1)/2) * number_node_one_row)
# print('\nDisplacement ratio zero point: {}'.format(displm_compelete[0]/u_analytic))
# print('\nDisplacement ratio: {}'.format(displm_compelete[5*mid_point - 5]/u_analytic))
# order_displm_array[order_counter] = [i_main, d[5*mid_point - 5]/u_analytic]
print('\nDisplacement ratio: {}'.format(displm_compelete[5*node_global_c - 5]/u_analytic))
order_displm_array[order_counter] = [i_main, displm_compelete[5*node_global_c - 5]/u_analytic]
time_assembling [order_counter] = [i_main, t_2_assembling - t_1_assembling]
time_solver [order_counter] = [i_main, t_2_solver - t_1_solver]
n_dimension_bc = global_load_bc.shape[0] ######################################
dof_displm_array[order_counter] = [n_dimension_bc, \
displm_compelete[5*node_global_c - 5]/u_analytic] ######################################
dof_time_assembling [order_counter] = [n_dimension_bc, t_2_assembling - t_1_assembling] ######################################
dof_time_solver [order_counter] = [n_dimension_bc, t_2_solver - t_1_solver] ######################################
cond_elem [order_counter] = [i_main, np.linalg.cond(k_global_bc)]
order_counter +=1
i_main += 1
np.savetxt(f'curvedbeam_p_ref_displm_elem_uv_{number_element_u}_{number_element_v}.dat', order_displm_array)
np.savetxt(f'curvedbeam_p_ref_asmtime_elem_uv_{number_element_u}_{number_element_v}.dat', time_assembling)
np.savetxt(f'curvedbeam_p_ref_solvertime_elem_uv_{number_element_u}_{number_element_v}.dat', time_solver)
np.savetxt(f'curvedbeam_p_ref_displm_dof_uv_{number_element_u}_{number_element_v}.dat', dof_displm_array)
np.savetxt(f'curvedbeam_p_ref_asmtime_dof_uv_{number_element_u}_{number_element_v}.dat', dof_time_assembling)
np.savetxt(f'curvedbeam_p_ref_solvertime_dof_uv_{number_element_u}_{number_element_v}.dat', dof_time_solver)
np.savetxt(f'curvedbeam_p_ref_cond_elem_uv_{number_element_u}_{number_element_v}.dat', cond_elem)
elif refine_type =="h":
min_order_elem = int(input("\nEnter the minimum order of elements (max order = 30):\n"))
max_order_elem = int(input("Enter the maximum order of elements:\n"))
min_number_elem = int(input("\nEnter the minimum number of elements in u and v direction:\n"))
max_number_elem = int(input("Enter the maximum number of elements in u and v direction:\n"))
print("\nEnter the order of continuity at knots to be used for auto detection of elements boundaries in u direction")
print("The default value is '1'")
c_order_u =int(input())
print("\nEnter the order of continuity at knots to be used for auto detection of elements boundaries in v direction")
print("The default value is '1'")
c_order_v =int(input())
j_main = min_order_elem
while j_main <= max_order_elem:
if j_main==1:
lobatto_pw = lobatto_pw_all[1:3,:]
else:
lobatto_pw_all = lobatto_pw_all # np.delete(lobatto_pw_all,[0, 1, 2], 0)
index = np.argwhere(lobatto_pw_all==j_main)
lobatto_pw = lobatto_pw_all[index[0, 0] + 1:\
index[0, 0] + (j_main+1) + 1, :]
i_main = min_number_elem
elemnum_displm_array = np.zeros((max_number_elem - min_number_elem + 1, 2))
time_assembling = np.zeros((max_number_elem - min_number_elem + 1, 2))
time_solver = np.zeros((max_number_elem - min_number_elem + 1, 2))
dof_displm_array = np.zeros((max_number_elem - min_number_elem + 1, 2)) ######################################
dof_time_assembling = np.zeros((max_number_elem - min_number_elem + 1, 2)) ######################################
dof_time_solver = np.zeros((max_number_elem - min_number_elem + 1, 2)) ######################################
cond_elem =np.zeros((max_number_elem - min_number_elem + 1, 2)) #####################
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
elemnum_counter = 0
while i_main <= max_number_elem:
print("\n\n\nNumber of elements manually given in u and v: {} Order of elements: {} ".\
format(str(i_main)+'x'+str(i_main), j_main))
print("\nProgram starts to generate mesh according to continuity at knots and manual input of number of elements ...")
u_manual = np.linspace(0, 1, i_main + 1) #np.linspace(a, b, c) divide line bc to c-1 parts or add c points to it.
v_manual = np.linspace(0, 1, i_main + 1)
mesh = gsm.mesh_func(surfs, u_manual, v_manual, c_order_u, c_order_v)
element_boundaries_u = mesh[0]
element_boundaries_v = mesh[1]
number_element_u = len(element_boundaries_u) - 1
number_element_v = len(element_boundaries_v) - 1
bc = gsm.global_boundary_condition(lobatto_pw, bc_h_bott, bc_h_top,\
bc_v_left, bc_v_right, element_boundaries_u,\
element_boundaries_v)
print("\nAssembling global stiffness matrix ...")
t_1_assembling = time.perf_counter()
k_global = gsm.global_stiffness_matrix(surfs, lobatto_pw, \
element_boundaries_u, element_boundaries_v, elastic_modulus, nu)
t_2_assembling = time.perf_counter()
k_global_bc = esm.stiffness_matrix_bc_applied(k_global, bc)
print("\nAssembling global load vector ...")
number_lobatto_node = lobatto_pw.shape[0]
number_element_u = len(element_boundaries_u) - 1
number_element_v = len(element_boundaries_v) - 1
number_node_one_row = number_element_u*(number_lobatto_node - 1) + 1
number_node_one_column = number_element_v*(number_lobatto_node - 1) + 1
node_global_a = 1 # u = v = 0 . Four nodes at the tips of the square in u-v parametric space
node_global_b = node_global_a + number_node_one_row - 1
node_global_c = node_global_a + number_element_v*(number_lobatto_node-1)\
*number_node_one_row # u = 0, v = 1
global_load = glineloadv.global_lineload_vector(surfs, lobatto_pw, \
loaded_side, left_lineload, right_lineload, \
bottom_lineload, top_lineload, element_boundaries_u, \
element_boundaries_v)
global_load_bc = np.delete(global_load, bc, 0)
print("\nLinear solver in action! ...")
t_1_solver = time.perf_counter()
d = np.linalg.solve(k_global_bc, global_load_bc)
t_2_solver = time.perf_counter()
n_dimension = k_global.shape[0]
displm_compelete = np.zeros(n_dimension)
i = 0
j = 0
while i < n_dimension:
if i in bc:
i += 1
else:
displm_compelete[i] = d[j]
i += 1
j += 1
print('\nDisplacement ratio: {}'.format(displm_compelete[5*(node_global_c)-5]/u_analytic))
elemnum_displm_array[elemnum_counter] = [i_main, displm_compelete[5*(node_global_c)-5]/u_analytic] #if number_element_u!=number_element_v then what?????
time_assembling [elemnum_counter] = [i_main, t_2_assembling - t_1_assembling]
time_solver [elemnum_counter] = [i_main, t_2_solver - t_1_solver]
n_dimension_bc = global_load_bc.shape[0] ######################################
dof_displm_array[elemnum_counter] = [n_dimension_bc, \
displm_compelete[5*(node_global_c)-5]/u_analytic] ###################################
dof_time_assembling [elemnum_counter] = [n_dimension_bc, t_2_assembling - t_1_assembling] ######################################
dof_time_solver [elemnum_counter] = [n_dimension_bc, t_2_solver - t_1_solver] #################
# if j_main == max_order_elem:###############
if j_main in [6, 7, 8]:
cond_elem[elemnum_counter] = [i_main, np.linalg.cond(k_global_bc)]
elemnum_counter +=1
i_main += 1
np.savetxt(f'curvedbeam_h_ref_displm_p_{j_main}.dat', elemnum_displm_array)
np.savetxt(f'curvedbeam_h_ref_asmtime_p_{j_main}.dat', time_assembling)
np.savetxt(f'curvedbeam_h_ref_solvertime_p_{j_main}.dat', time_solver)
######################################
np.savetxt(f'curvedbeam_h_ref_displm_dof_p_{j_main}.dat', dof_displm_array)
np.savetxt(f'curvedbeam_h_ref_asmtime_dof_p_{j_main}.dat', dof_time_assembling)
np.savetxt(f'curvedbeam_h_ref_solvertime_dof_p_{j_main}.dat', dof_time_solver)
# if j_main == max_order_elem:###############
if j_main in [6, 7, 8]:##################
np.savetxt(f'curvedbeam_h_ref_cond_elem_p_{j_main}.dat', cond_elem)
j_main += 1
else:
raise ValueError('Refinement can be either "p" or "h"')
# if refine_type == "p" :
# afgnu.plot_displm_solver_assembling_p_ref(number_element_u, number_element_v)
# else:
# afgnu.plot_displm_solver_assembling_h_ref(min_order_elem, max_order_elem)
# # afgnu.plot_displm_time_error_h_ref(min_order_elem, max_order_elem)