Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GAWT L02 Gruppe 10
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Johannes Huschens
GAWT L02 Gruppe 10
Commits
ae948039
Commit
ae948039
authored
1 year ago
by
Johannes Huschens
Browse files
Options
Downloads
Patches
Plain Diff
Delete Datenanalyse_data-1.ipynb
parent
5f79d96f
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Datenanalyse_data-1.ipynb
+0
-1082
0 additions, 1082 deletions
Datenanalyse_data-1.ipynb
with
0 additions
and
1082 deletions
Datenanalyse_data-1.ipynb
deleted
100644 → 0
+
0
−
1082
View file @
5f79d96f
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "39b5f535",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e84390b6",
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3baee1a0-92cc-4d06-8bf6-76d38528079c",
"metadata": {},
"outputs": [],
"source": [
"sample_data = pd.read_csv('urliste_data-1.csv', encoding =\"ISO-8859-1\" , parse_dates= [0], dayfirst=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3b862dc8-5ef1-4f52-a0e3-5fecb0402fe0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Jahr</th>\n",
" <th>Bevölkerungsstand</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1950-12-31</td>\n",
" <td>50958125</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1951-12-31</td>\n",
" <td>51434777</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1952-12-31</td>\n",
" <td>51863761</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1953-12-31</td>\n",
" <td>52453806</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1954-12-31</td>\n",
" <td>52943295</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>2017-12-31</td>\n",
" <td>82792351</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>2018-12-31</td>\n",
" <td>83019213</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>2019-12-31</td>\n",
" <td>83166711</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>2020-12-31</td>\n",
" <td>83155031</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>2021-12-31</td>\n",
" <td>83237124</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>72 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" Jahr Bevölkerungsstand\n",
"0 1950-12-31 50958125\n",
"1 1951-12-31 51434777\n",
"2 1952-12-31 51863761\n",
"3 1953-12-31 52453806\n",
"4 1954-12-31 52943295\n",
".. ... ...\n",
"67 2017-12-31 82792351\n",
"68 2018-12-31 83019213\n",
"69 2019-12-31 83166711\n",
"70 2020-12-31 83155031\n",
"71 2021-12-31 83237124\n",
"\n",
"[72 rows x 2 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample_data"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "948b6220-27a4-40ce-95e8-46d2512a7fcb",
"metadata": {},
"outputs": [],
"source": [
"#R1.6 excel-datei\n",
"sample_data.to_excel(\"excel_data-1.xlsx\", sheet_name = \"Sheet1\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "eda9688e-eb77-48c9-9a25-9c5a978fafc3",
"metadata": {},
"outputs": [],
"source": [
"jahre = pd.to_numeric(sample_data.Jahr)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "130fcbbc-9808-4558-8104-58cabb24373c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"69025182.1388889\n",
"1986-07-01 12:00:00\n"
]
}
],
"source": [
"#R1.7 arith. Mittel Bevölkerungsstand\n",
"mean_bevoelkerung = sample_data.Bevölkerungsstand.mean()\n",
"print(mean_bevoelkerung)\n",
"\n",
"#arith. Mittel Jahr\n",
"mean_date=sample_data.Jahr.mean()\n",
"print(mean_date)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "286e6fa7-b3f1-4ad7-9d80-5c764517489f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"61762240.5\n",
"1986-07-01 12:00:00\n"
]
}
],
"source": [
"#R1.7 median Bevölkerungsstand\n",
"median_bevoelkerung= sample_data.Bevölkerungsstand.median()\n",
"print(median_bevoelkerung)\n",
"\n",
"#median Jahr\n",
"median_date=sample_data.Jahr.median()\n",
"print(median_date)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d6443f4e-176e-40a4-997c-5f9f31900296",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 50958125\n",
"1 51434777\n",
"2 51863761\n",
"3 52453806\n",
"4 52943295\n",
" ... \n",
"67 82792351\n",
"68 83019213\n",
"69 83155031\n",
"70 83166711\n",
"71 83237124\n",
"Name: Bevölkerungsstand, Length: 72, dtype: int64\n",
"0 1950-12-31\n",
"1 1951-12-31\n",
"2 1952-12-31\n",
"3 1953-12-31\n",
"4 1954-12-31\n",
" ... \n",
"67 2017-12-31\n",
"68 2018-12-31\n",
"69 2019-12-31\n",
"70 2020-12-31\n",
"71 2021-12-31\n",
"Name: Jahr, Length: 72, dtype: datetime64[ns]\n"
]
}
],
"source": [
"#R1.7 modus Bevölkerungsstand und Jahr\n",
"mode_bevoelkerung=sample_data.Bevölkerungsstand.mode()\n",
"print(mode_bevoelkerung)\n",
"\n",
"mode_date=sample_data.Jahr.mode()\n",
"print(mode_date)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "259eb698-7074-4b50-8789-80c58cc6f156",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"32278999\n",
"25933 days 00:00:00\n"
]
}
],
"source": [
"#R1.8 Spannweite Bevölkerungsstand und Jahr\n",
"spannweite_bevoelkerung=sample_data.Bevölkerungsstand.max()-sample_data.Bevölkerungsstand.min()\n",
"print(spannweite_bevoelkerung)\n",
"\n",
"spannweite_date=sample_data.Jahr.max()-sample_data.Jahr.min()\n",
"print(spannweite_date)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "06c7ad43-6425-41b4-be9a-f7db4ac4ef03",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10703382.222222222\n"
]
}
],
"source": [
"#R1.9 mittlere Abweichung vom Median\n",
"n = len(sample_data)\n",
"value = 0\n",
"for i in range(n):\n",
" value += abs(sample_data.Bevölkerungsstand.iloc[i] - sample_data.Bevölkerungsstand.median())\n",
"\n",
"MA_median_population = value/n\n",
"print(MA_median_population)\n",
"\n",
"#für Jahr nicht berechenbar, da es sich um eine Intervallskala handelt"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "e9a5daba-41d3-4323-97e9-09d87370c2b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"142802788477530.62"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.10 Varianz Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.var()\n",
"\n",
"#für Jahr nicht berechenbar, da es sich um eine Intervallskala handelt"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "9edcc4a6-c295-4f61-ae25-9bee9ac5fcf5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.1731253971360521"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.11 Variationskoeffizient Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.std()/sample_data.Bevölkerungsstand.mean()\n",
"\n",
"#für Jahr nicht berechenbar, da es sich um eine Intervallskala handelt"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "102eb010-bf06-48aa-8ae2-a5eb27d96f6d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGxCAYAAACXwjeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAe0lEQVR4nO3deVyU5f7/8fcIMoAiispmCC6Qu5mYC+d8cckFlzI1S1PBlqNZWXoqM49bJaaV0upSippHo3NOaSePuaRSpqZHzcpUtFzIRAsXVBQXrt8f/pjjCCpD4HDb6/l4zEPmuq+57889MzBvr/u+7rEZY4wAAAAsqoy7CwAAAPg9CDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDO4rjlz5shmszndqlatqtatW+vTTz91d3kOERERSkhIcPlx2dnZGjdunNasWVOo/vv27cv3fFSoUEGNGzdWUlKSLl686HINrnr88cdls9kk/e/1+e9//+vUZ9y4cY4+eSIiItS1a9cSr+9m8J///Efjxo1zaw1r1qyRzWa77nvzyt9Rb29vBQcHq02bNpo4caKOHDlyQ+p95513NGfOnBJb/9Xe6wVp3bq1WrduXWK1XEtenfv27XPL9v+ICDMotOTkZK1fv17r1q3TzJkz5eHhoW7duunf//63u0v7XbKzszV+/PhCh5k8TzzxhNavX6/169frww8/VExMjIYNG6Znn322ZAq9zNNPP63169dLkrp06aL169erbt26Jb7dP5L//Oc/Gj9+vLvLcEne7+iKFSv09ttv67bbbtOkSZNUt25drVy5ssS3X9JhBrgaT3cXAOto0KCBoqOjHfc7deqkSpUqaeHCherWrZsbK3OP6tWrq0WLFo77nTp10vfff6+FCxfqtddeK9FtR0REKCIiQpJUtWpVVa1atUS3V1jZ2dny9fV1dxl/WFf+jvbs2VPDhg3Tn/70J/Xo0UO7d+9WUFCQGysESgYjMygyb29veXl5qWzZsk7tR48e1ZAhQ1StWjV5eXmpZs2aGjVqlHJyciRJZ8+eVZMmTVS7dm2dOHHC8biMjAwFBwerdevWjkM1CQkJKl++vLZv36527dqpXLlyqlq1qh5//HFlZ2dft8YDBw6oX79+CgwMlN1uV926dfXaa68pNzdX0qVDRnlBYPz48Y5h+qIcrpIkf3//fM+HJKWkpKhly5YqV66cypcvr44dO2rr1q2O5UlJSbLZbNqzZ0++x44YMUJeXl767bffHG2zZ89W48aN5e3trYCAAN1zzz3asWNHkWp+55135OnpqbFjxzraVq5cqXbt2qlChQry9fVVTEyMPv/8c6fH5R3G2rJli3r16qVKlSqpVq1akq4+xJ+QkOAIYdL/Dtm9+uqrmjJlimrUqKHy5curZcuW2rBhQ77Hv/vuu4qKipLdble9evW0YMGCfOuUpGnTpqlx48YqX768/Pz8VKdOHT3//POO5dnZ2Xr66adVo0YNx3MYHR2thQsXOup8++23Jcnp8E3eYYO3335b//d//6fAwECVK1dODRs21OTJk3X+/HmnOlq3bq0GDRpo06ZN+vOf/yxfX1/VrFlTL7/8suM9mGfnzp3q1KmTfH19VaVKFQ0ePFgnT54s4BVzTfXq1fXaa6/p5MmTmjFjhtOy//73v7rrrrsUEBAgb29vNWnSRB9++KFTn4IOV0r5D6VERERo+/btSk1NdTxfea9Lbm6uXnrpJd16663y8fFRxYoV1ahRI73++uv5noM+ffooKChIdrtd1atX14ABAxx/O/KcPHlSjz76qKpUqaLKlSurR48e+uWXX677XIwfP17NmzdXQECAKlSooNtvv12zZs3Sld+3nHc49rPPPtPtt98uHx8f1alTR7Nnz863zg0bNigmJkbe3t4KDQ3VyJEj870PcAMY4DqSk5ONJLNhwwZz/vx5c+7cOZOenm6GDh1qypQpYz777DNH3zNnzphGjRqZcuXKmVdffdUsX77cjB492nh6eprOnTs7+qWlpRk/Pz/To0cPY4wxFy9eNG3btjWBgYHml19+cfSLj483Xl5epnr16mbChAlm+fLlZty4ccbT09N07drVqc7w8HATHx/vuH/kyBFTrVo1U7VqVTN9+nTz2Wefmccff9xIMo8++qgxxpizZ8+azz77zEgyDz30kFm/fr1Zv3692bNnz1Wfj7179xpJZtKkSeb8+fPm/Pnz5rfffjOzZs0ynp6eZtSoUU79J0yYYGw2m3nwwQfNp59+aj766CPTsmVLU65cObN9+3ZjjDG//vqr8fLyyvfYCxcumNDQUMfzZIwxiYmJRpLp06ePWbJkiZk3b56pWbOm8ff3N2lpaY5+Y8eONVf+ioeHh5suXboYY4zJzc01f/3rX03ZsmVNcnKyo8/7779vbDab6d69u/noo4/Mv//9b9O1a1fj4eFhVq5cmW/94eHhZsSIEWbFihVm0aJFxhhjYmNjTWxsbL7nLj4+3oSHh+d7LiMiIkynTp3MokWLzKJFi0zDhg1NpUqVzPHjxx19Z8yYYSSZnj17mk8//dT8/e9/N1FRUSY8PNxpnQsXLjSSzBNPPGGWL19uVq5caaZPn26GDh3q6DNo0CDj6+trpkyZYlavXm0+/fRT8/LLL5s333zTGGPMnj17TK9evYwkx3ti/fr15uzZs8YYY4YNG2amTZtmPvvsM7Nq1SozdepUU6VKFTNw4ECn/Y2NjTWVK1c2kZGRZvr06WbFihVmyJAhRpKZO3euo19GRoYJDAw01apVM8nJyeY///mPeeCBB0z16tWNJLN69ep8z+Xl8n5HN23aVODyU6dOGQ8PD9OuXTtH26pVq4yXl5f585//bFJSUsxnn31mEhISjCSn90NB76PLt7l3715jjDFbtmwxNWvWNE2aNHE8X1u2bDHGGDNx4kTj4eFhxo4daz7//HPz2WefmaSkJDNu3DjH+r755htTvnx5ExERYaZPn24+//xzM3/+fNO7d2+TlZXltM2aNWuaJ554wixbtsy89957plKlSqZNmzb5nvsr34MJCQlm1qxZZsWKFWbFihXmxRdfND4+Pmb8+PFO/cLDw80tt9xi6tWrZ+bNm2eWLVtm7r33XiPJpKamOvpt377d+Pr6mnr16pmFCxeaxYsXm44dOzpet7znBiWPMIPryvsDcuXNbrebd955x6nv9OnTjSTz4YcfOrVPmjTJSDLLly93tKWkpBhJJikpyYwZM8aUKVPGabkxlz78JJnXX3/dqX3ChAlGklm7dq2j7cow89xzzxlJ5uuvv3Z67KOPPmpsNpvZtWuXMeZSkJBkxo4dW6jnI+8DuKBbQkKCuXDhgqPvgQMHjKenp3niiSec1nHy5EkTHBxsevfu7Wjr0aOHueWWW8zFixcdbf/5z3+MJPPvf//bGGPMsWPHjI+Pj1MwzNuO3W43ffv2dbRdK8xkZ2ebnj17Gn9/f6eAcvr0aRMQEGC6devm9LiLFy+axo0bmzvuuCPf+seMGZPvOXI1zDRs2NDpedu4caORZBYuXOjYfnBwsGnevLnT+vbv32/Kli3rtM7HH3/cVKxYMd+2L9egQQPTvXv3a/Z57LHHCvwQv9LFixfN+fPnzbx584yHh4c5evSoY1lsbGyB78F69eqZjh07Ou6PGDHC2Gw288033zj1a9++fbGEGWOMCQoKMnXr1nXcr1OnjmnSpIk5f/68U7+uXbuakJAQx/uwsGHGGGPq169f4OvetWtXc9ttt11zH9q2bWsqVqxojhw5ctU+edscMmSIU/vkyZONJHPo0CFH29Xeg3nyXrcXXnjBVK5c2eTm5jqWhYeHG29vb7N//35H25kzZ0xAQIAZNGiQo+2+++4zPj4+JiMjw9F24cIFU6dOHcLMDcZhJhTavHnztGnTJm3atElLly5VfHy8HnvsMb311luOPqtWrVK5cuXUq1cvp8fmHba5/FBF79699eijj+qZZ57RSy+9pOeff17t27cvcNsPPPCA0/2+fftKklavXn3VeletWqV69erpjjvuyFeLMUarVq26/k5fw5NPPul4PlavXq3ExER9+OGH6tOnj6PPsmXLdOHCBQ0YMEAXLlxw3Ly9vRUbG+t00vHAgQP1888/O52omZycrODgYMXFxUmS1q9frzNnzuQ7DBYWFqa2bdvmOxRUkMzMTLVt21YbN27U2rVr1a5dO8eydevW6ejRo4qPj3eqNzc3V506ddKmTZt0+vRpp/X17NnTlaetQF26dJGHh4fjfqNGjSRJ+/fvlyTt2rVLGRkZ6t27t9PjqlevrpiYGKe2O+64Q8ePH1efPn20ePFip8Nzl/dZunSpnnvuOa1Zs0Znzpxxqd6tW7fqrrvuUuXKleXh4aGyZctqwIABunjxotLS0pz6BgcH53sPNmrUyLFv0qX3cf369dW4cWOnfnnv8+JgLjuUsmfPHu3cudPxe3X5a925c2cdOnRIu3btKrZt33HHHdq2bZuGDBmiZcuWKSsry2l5dna2UlNT1bt370Kd/3XXXXc53b/y/XI1q1at0p133il/f3/H6zZmzBhlZmbmm/F12223qXr16o773t7eioqKyve6tWvXzuk8JA8PD913333X3QcUL8IMCq1u3bqKjo5WdHS0OnXqpBkzZqhDhw569tlndfz4cUmXPiiDg4PzHWMPDAyUp6enMjMzndoffPBBnT9/Xp6enho6dGiB2/X09FTlypWd2oKDgx3bu5rMzEyFhITkaw8NDb3uYwvjlltucTwfrVu31siRIzV69Gj94x//0LJlyyRJhw8fliQ1a9ZMZcuWdbqlpKQ4fdDGxcUpJCREycnJkqRjx47pk08+0YABAxwf9Hk1X22/CrNPaWlp+vrrrxUXF6cGDRo4Lcurt1evXvnqnTRpkowxOnr0qNNjCqrFVVe+vna7XZIcISNvvwo6efXKtv79+2v27Nnav3+/evbsqcDAQDVv3lwrVqxw9HnjjTc0YsQILVq0SG3atFFAQIC6d++u3bt3X7fWAwcO6M9//rMOHjyo119/XV9++aU2bdrkOMfmymB05b7l7d/l/fJ+b65UUFtRnD59WpmZmY73ft7r/PTTT+d7nYcMGSJJBYbAoho5cqReffVVbdiwQXFxcapcubLatWvnmGJ97NgxXbx4Ubfcckuh1ne990tBNm7cqA4dOki6dO7VV199pU2bNmnUqFEFPrY0vG4oPGYz4Xdp1KiRli1bprS0NN1xxx2qXLmyvv76axljnALNkSNHdOHCBVWpUsXRdvr0afXv319RUVE6fPiwHn74YS1evDjfNi5cuKDMzEynPy4ZGRmSCv6Dk6dy5co6dOhQvva8EwUvr6W45P0Pcdu2berYsaNjG//85z8VHh5+zcd6eHiof//+euONN3T8+HEtWLBAOTk5GjhwoKNP3v5ebb8Ks08tW7bUvffeq4ceekjSpZNly5S59P+avMe/+eabTjO1LndleCjo5FBvb2+nk7vzFPUDMm+/8z6EL5f3XrjcwIEDNXDgQJ0+fVpffPGFxo4dq65duyotLU3h4eEqV66cxo8fr/Hjx+vw4cOOUZpu3bpp586d16xl0aJFOn36tD766COn1/Sbb74p0r7l7V9B+1FQW1EsWbJEFy9edJyUnfc6jxw5Uj169CjwMbfeequkS6+lJOXk5DhCg+Taa+np6anhw4dr+PDhOn78uFauXKnnn39eHTt2VHp6ugICAuTh4aGff/65KLtXKB988IHKli2rTz/91LFP0qXXs6hK+nVD4TEyg98l7w943tBwu3btdOrUqXx/IObNm+dYnmfw4ME6cOCAPvroI82aNUuffPKJpk6dWuB2/v73vzvdX7BggSRd86JY7dq10w8//KAtW7bkq8Vms6lNmzaSCve/usLKez4CAwMlSR07dpSnp6d+/PFHxyjOlbfLDRw4UGfPntXChQs1Z84ctWzZUnXq1HEsb9mypXx8fDR//nynx/38889atWqV0/N7LfHx8frggw+UnJzsODwiSTExMapYsaJ++OGHq9br5eV13fVHREQoLS3NaRZKZmam1q1bV6j6rnTrrbcqODg430ybAwcOXHOd5cqVU1xcnEaNGqVz585p+/bt+foEBQUpISFBffr00a5duxyz5K72vsgLb5d/sBtj9O677xZp3ySpTZs22r59u7Zt2+bUnvc+/z0OHDigp59+Wv7+/ho0aJCkS89nZGSktm3bdtXX2c/PT5IcM5K+/fZbp/UWdH2pK0cuClKxYkX16tVLjz32mI4ePap9+/bJx8dHsbGx+sc//lGsI0KXs9ls8vT0dDqceebMGb3//vtFXmebNm30+eefO4XsixcvKiUl5XfVCtcxMoNC+/7773XhwgVJlz6YPvroI61YsUL33HOPatSoIUkaMGCA3n77bcXHx2vfvn1q2LCh1q5dq8TERHXu3Fl33nmnJOm9997T/PnzlZycrPr166t+/fp6/PHHNWLECMXExDidY+Dl5aXXXntNp06dUrNmzbRu3Tq99NJLiouL05/+9Ker1jts2DDNmzdPXbp00QsvvKDw8HAtWbJE77zzjh599FFFRUVJkvz8/BQeHq7FixerXbt2CggIUJUqVfJN973SgQMHHNOHT58+rfXr12vixIkKDw93/G83IiJCL7zwgkaNGqWffvrJcW2ew4cPa+PGjY4Rgjx16tRRy5YtNXHiRKWnp2vmzJlO26xYsaJGjx6t559/XgMGDFCfPn2UmZmp8ePHy9vb22l69fX06tVLvr6+6tWrl86cOaOFCxeqfPnyevPNNxUfH6+jR4+qV69eCgwM1K+//qpt27bp119/1bRp06677v79+2vGjBnq16+fHnnkEWVmZmry5MmqUKFCoeu7XJkyZTR+/HgNGjRIvXr10oMPPqjjx49r/PjxCgkJcYwsSdIjjzwiHx8fxcTEKCQkRBkZGZo4caL8/f3VrFkzSVLz5s3VtWtXNWrUSJUqVdKOHTv0/vvvq2XLlo7r5DRs2FCSNGnSJMXFxcnDw0ONGjVS+/bt5eXlpT59+ujZZ5/V2bNnNW3aNB07dqxI+yZJTz31lGbPnq0uXbropZdeUlBQkP7+979fd5ToSnm/oxcuXNCRI0f05ZdfKjk5WR4eHvr444+dzkeZMWOG4uLi1LFjRyUkJKhatWo6evSoduzYoS1btugf//iHJKlz584KCAjQQw89pBdeeEGenp6aM2eO0tPT822/YcOG+uCDD5SSkqKaNWvK29tbDRs2VLdu3RzXwKlatar279+vpKQkhYeHKzIyUpI0ZcoU/elPf1Lz5s313HPPqXbt2jp8+LA++eQTzZgxwxGuiqpLly6aMmWK+vbtq7/85S/KzMzUq6++6hRKXfW3v/1Nn3zyidq2basxY8bI19dXb7/9dr7zynADuPX0Y1hCQbOZ/P39zW233WamTJnimK6aJzMz0wwePNiEhIQYT09PEx4ebkaOHOno9+233xofHx+nmUfGXJom3bRpUxMREWGOHTtmjLk0+6VcuXLm22+/Na1btzY+Pj4mICDAPProo+bUqVNOj79yNpMxl2a79O3b11SuXNmULVvW3HrrreaVV15xmjFkjDErV640TZo0MXa73UjKt57LFTSbydvb20RFRZmnnnrKaUZFnkWLFpk2bdqYChUqGLvdbsLDw02vXr2cZhLlmTlzppFkfHx8zIkTJwqs4b333jONGjUyXl5ext/f39x9992Oad55rjc1O8/q1atN+fLlTadOnUx2drYxxpjU1FTTpUsXExAQYMqWLWuqVatmunTpYv7xj3/kW/+vv/5aYI1z5841devWNd7e3qZevXomJSXlqrOZXnnllXyPVwEzzGbOnGlq165tvLy8TFRUlJk9e7a5++67TZMmTZy226ZNGxMUFGS8vLxMaGio6d27t/n2228dfZ577jkTHR1tKlWqZOx2u6lZs6YZNmyY+e233xx9cnJyzMMPP2yqVq1qbDab0+yUf//736Zx48bG29vbVKtWzTzzzDNm6dKl+WYexcbGmvr16+fbtyufB2OM+eGHH0z79u2Nt7e3CQgIMA899JBZvHixS7OZ8m5eXl4mMDDQxMbGmsTExKvOENq2bZvp3bu3CQwMNGXLljXBwcGmbdu2Zvr06U79Nm7caFq1amXKlStnqlWrZsaOHWvee++9fDN29u3bZzp06GD8/Pwc0/aNMea1114zrVq1MlWqVHFcauGhhx4y+/bty/cc3HvvvaZy5cqOfgkJCY6/HVebtbV69eoCn/srZzPNnj3b3HrrrY7XfOLEiWbWrFn59qOg35OrrfOrr74yLVq0MHa73QQHB5tnnnnG8TvMbKYbx2bMFVcLAkqRhIQE/fOf/9SpU6fcXQpKoePHjysqKkrdu3fPN4oF4I+Dw0wALCEjI0MTJkxQmzZtVLlyZe3fv19Tp07VyZMn9eSTT7q7PABuRJgBYAl2u1379u3TkCFDdPToUfn6+qpFixaaPn266tev7+7yALgRh5kAAIClMTUbAABYGmEGAABYGmEGAABY2k1/AnBubq5++eUX+fn5FXjZdQAAUPoYY3Ty5EmFhoY6XRizIDd9mPnll18UFhbm7jIAAEARpKenX/dLSG/6MJN3Cez09PQiX0odAADcWFlZWQoLCyvUV1nc9GEm79BShQoVCDMAAFhMYU4R4QRgAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaTf9F00CKF2ys7O1c+fOYlnXmTNntG/fPkVERMjHx6dY1lmnTh35+voWy7oA3BiEGQA31M6dO9W0aVN3l3FVmzdv1u233+7uMgC4gDAD4IaqU6eONm/eXCzr2rFjh/r166f58+erbt26xbLOOnXqFMt6ANw4hBkAN5Svr2+xj3zUrVuX0RTgD4wTgAEAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKVxBWAAhbZ7926dPHnS3WU47Nixw+nf0sLPz0+RkZHuLgP4wyDMACiU3bt3Kyoqyt1lFKhfv37uLiGftLQ0Ag1wgxBmABRK3ohMcX6p4+915swZ7du3TxEREfLx8XF3OZL+9+WXpWkEC7jZEWYAuKS0faljTEyMu0sA4GacAAwAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACzNrWHmwoUL+tvf/qYaNWrIx8dHNWvW1AsvvKDc3FxHH2OMxo0bp9DQUPn4+Kh169bavn27G6sGAACliVvDzKRJkzR9+nS99dZb2rFjhyZPnqxXXnlFb775pqPP5MmTNWXKFL311lvatGmTgoOD1b59e508edKNlQMAgNLCrWFm/fr1uvvuu9WlSxdFRESoV69e6tChg/773/9KujQqk5SUpFGjRqlHjx5q0KCB5s6dq+zsbC1YsMCdpQMAgFLCrWHmT3/6kz7//HOlpaVJkrZt26a1a9eqc+fOkqS9e/cqIyNDHTp0cDzGbrcrNjZW69atK3CdOTk5ysrKcroBAICbl6c7Nz5ixAidOHFCderUkYeHhy5evKgJEyaoT58+kqSMjAxJUlBQkNPjgoKCtH///gLXOXHiRI0fP75kCwcAAKWGW0dmUlJSNH/+fC1YsEBbtmzR3Llz9eqrr2ru3LlO/Ww2m9N9Y0y+tjwjR47UiRMnHLf09PQSqx8AALifW0dmnnnmGT333HO6//77JUkNGzbU/v37NXHiRMXHxys4OFjSpRGakJAQx+OOHDmSb7Qmj91ul91uL/niAQBAqeDWkZns7GyVKeNcgoeHh2Nqdo0aNRQcHKwVK1Y4lp87d06pqalq1arVDa0VAACUTm4dmenWrZsmTJig6tWrq379+tq6daumTJmiBx98UNKlw0tPPfWUEhMTFRkZqcjISCUmJsrX11d9+/Z1Z+kAAKCUcGuYefPNNzV69GgNGTJER44cUWhoqAYNGqQxY8Y4+jz77LM6c+aMhgwZomPHjql58+Zavny5/Pz83Fg5AAAoLdwaZvz8/JSUlKSkpKSr9rHZbBo3bpzGjRt3w+oCAADWwXczAQAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAAS3NrmImIiJDNZst3e+yxxyRJCQkJ+Za1aNHCnSUDAIBSxtOdG9+0aZMuXrzouP/999+rffv2uvfeex1tnTp1UnJysuO+l5fXDa0RAACUbm4NM1WrVnW6//LLL6tWrVqKjY11tNntdgUHB9/o0gAAgEUUKczk5uZqz549OnLkiHJzc52W/d///V+RCjl37pzmz5+v4cOHy2azOdrXrFmjwMBAVaxYUbGxsZowYYICAwOvup6cnBzl5OQ47mdlZRWpHgAAYA0uh5kNGzaob9++2r9/v4wxTstsNpvTYSNXLFq0SMePH1dCQoKjLS4uTvfee6/Cw8O1d+9ejR49Wm3bttXmzZtlt9sLXM/EiRM1fvz4ItUAAACsx+UwM3jwYEVHR2vJkiUKCQlxGkX5PWbNmqW4uDiFhoY62u677z7Hzw0aNFB0dLTCw8O1ZMkS9ejRo8D1jBw5UsOHD3fcz8rKUlhYWLHUCAAASh+Xw8zu3bv1z3/+U7Vr1y62Ivbv36+VK1fqo48+uma/kJAQhYeHa/fu3VftY7fbrzpqAwAAbj4uT81u3ry59uzZU6xFJCcnKzAwUF26dLlmv8zMTKWnpyskJKRYtw8AAKzL5ZGZJ554Qn/961+VkZGhhg0bqmzZsk7LGzVq5NL6cnNzlZycrPj4eHl6/q+cU6dOady4cerZs6dCQkK0b98+Pf/886pSpYruueceV8sGAAA3KZfDTM+ePSVJDz74oKPNZrPJGFOkE4BXrlypAwcOOK1Pkjw8PPTdd99p3rx5On78uEJCQtSmTRulpKTIz8/P1bIBAMBNyuUws3fv3mItoEOHDvlmRUmSj4+Pli1bVqzbAgAANx+Xw0x4eHhJ1AEAAFAkRfpupvfff18xMTEKDQ3V/v37JUlJSUlavHhxsRYHAABwPS6HmWnTpmn48OHq3Lmzjh8/7jhHpmLFikpKSiru+gAAAK7J5TDz5ptv6t1339WoUaPk4eHhaI+OjtZ3331XrMUBAABcj8thZu/evWrSpEm+drvdrtOnTxdLUQAAAIXlcpipUaOGvvnmm3ztS5cuVb169YqjJgAAgEJzeTbTM888o8cee0xnz56VMUYbN27UwoULNXHiRL333nslUSMAAMBVuRxmBg4cqAsXLujZZ59Vdna2+vbtq2rVqun111/X/fffXxI1AgAAXJXLYUaSHnnkET3yyCP67bfflJubq8DAwOKuCwAAoFCKFGbyVKlSpbjqAAAAKBKXTwA+fPiw+vfvr9DQUHl6esrDw8PpBgAAcCO5PDKTkJCgAwcOaPTo0QoJCZHNZiuJugAAAArF5TCzdu1affnll7rttttKoBwAAADXuHyYKSwsrMBvuQYAAHAHl8NMUlKSnnvuOe3bt68EygEAAHCNy4eZ7rvvPmVnZ6tWrVry9fVV2bJlnZYfPXq02IoDAAC4HpfDDN+MDQAAShOXw0x8fHxJ1AEAAFAkRbpo3sWLF7Vo0SLt2LFDNptN9erV01133cV1ZgAAwA3ncpjZs2ePOnfurIMHD+rWW2+VMUZpaWkKCwvTkiVLVKtWrZKoEwAAoEAuz2YaOnSoatWqpfT0dG3ZskVbt27VgQMHVKNGDQ0dOrQkagQAALgql0dmUlNTtWHDBgUEBDjaKleurJdfflkxMTHFWhwAAMD1uDwyY7fbdfLkyXztp06dkpeXV7EUBQAAUFguh5muXbvqL3/5i77++msZY2SM0YYNGzR48GDdddddJVEjAADAVbkcZt544w3VqlVLLVu2lLe3t7y9vRUTE6PatWvr9ddfL4kaAQAArsrlc2YqVqyoxYsXa/fu3dq5c6eMMapXr55q165dEvUBAABcU5GuMyNJkZGRioyMLM5aAAAAXFaoMDN8+HC9+OKLKleunIYPH37NvlOmTCmWwgAAAAqjUGFm69atOn/+vOPnq7HZbMVTFQAAQCEVKsysXr26wJ8BAADczeXZTAAAAKVJoUZmevToUegVfvTRR0UuBgAAwFWFCjP+/v4lXQcAAECRFCrMJCcnl3QdAAAARcI5MwAAwNIKNTLTpEmTQk+73rJly+8qCAAAwBWFCjPdu3cv4TIAAACKplBhZuzYsSVdBwAAQJFwzgwAALC0Qo3MBAQEKC0tTVWqVFGlSpWuef7M0aNHi604AACA6ylUmJk6dar8/PwkSUlJSSVZDwAAgEsKFWbi4+ML/Pn3ioiI0P79+/O1DxkyRG+//baMMRo/frxmzpypY8eOqXnz5nr77bdVv379YqsBAABYm1vPmdm0aZMOHTrkuK1YsUKSdO+990qSJk+erClTpuitt97Spk2bFBwcrPbt2+vkyZPuLBsAAJQihQ4zHh4ehbq5omrVqgoODnbcPv30U9WqVUuxsbEyxigpKUmjRo1Sjx491KBBA82dO1fZ2dlasGCByzsKAABuToU6zCRJxhiFh4crPj5eTZo0KfZCzp07p/nz52v48OGy2Wz66aeflJGRoQ4dOjj62O12xcbGat26dRo0aFCB68nJyVFOTo7jflZWVrHXCgAASo9Ch5mvv/5as2fP1uuvv64aNWrowQcf1AMPPKBKlSoVSyGLFi3S8ePHlZCQIEnKyMiQJAUFBTn1CwoKKvA8mzwTJ07U+PHji6UmAABQ+hX6MFOzZs00bdo0HTp0SMOHD9fHH3+sW265Rffff7/jXJffY9asWYqLi1NoaKhT+5XTwI0x15waPnLkSJ04ccJxS09P/921AQCA0svlE4C9vb3Vr18/ff755/r+++915MgRderU6XddX2b//v1auXKlHn74YUdbcHCwpP+N0OQ5cuRIvtGay9ntdlWoUMHpBgAAbl5Fms30888/66WXXlL79u21a9cuPfPMM78rNCQnJyswMFBdunRxtNWoUUPBwcFOoz7nzp1TamqqWrVqVeRtAQCAm0uhz5k5d+6cPv74Y82aNUtffvml4uLilJSUpM6dO6tMmaLP8M7NzVVycrLi4+Pl6fm/cmw2m5566iklJiYqMjJSkZGRSkxMlK+vr/r27Vvk7QEAgJtLocNMSEiI/Pz8FB8fr3feeUeBgYGSpFOnTjn1c3WEZuXKlTpw4IAefPDBfMueffZZnTlzRkOGDHFcNG/58uWOqxEDAADYjDGmMB0vH30p6ATcvBNzL168WHzVFYOsrCz5+/vrxIkTnD8D/A5btmxR06ZNtXnzZt1+++3uLqfU4nkCiocrn9+FHplZvXr17y4MAACguBU6zMTGxpZkHQAAAEXi1u9mAgAA+L0IMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIKPZspz+nTp/Xyyy/r888/15EjR5Sbm+u0/Keffiq24gAAAK7H5TDz8MMPKzU1Vf3791dISMg1v8EaAACgpLkcZpYuXaolS5YoJiamJOoBAABwicvnzFSqVEkBAQElUQsAAIDLXA4zL774osaMGaPs7OySqAcAAMAlLh9meu211/Tjjz8qKChIERERKlu2rNPyLVu2FFtxAAAA1+NymOnevXsJlAEAAFA0LoeZsWPHlkQdAAAARcJF8wAAgKUVamQmICBAaWlpqlKliipVqnTNa8scPXq02IoDAAC4nkKFmalTp8rPz0+SlJSUVJL1AAAAuKRQYSY+Pr7AnwEAANyNc2YAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAICluXwF4HvuuafA68zYbDZ5e3urdu3a6tu3r2699dZiKRAAAOBaXB6Z8ff316pVq7RlyxZHqNm6datWrVqlCxcuKCUlRY0bN9ZXX31V7MUCAABcyeWRmeDgYPXt21dvvfWWypS5lIVyc3P15JNPys/PTx988IEGDx6sESNGaO3atcVeMAAAwOVcHpmZNWuWnnrqKUeQkaQyZcroiSee0MyZM2Wz2fT444/r+++/L9ZCAQAACuJymLlw4YJ27tyZr33nzp26ePGiJMnb2/ua398EAABQXFw+zNS/f3899NBDev7559WsWTPZbDZt3LhRiYmJGjBggCQpNTVV9evXL/ZiAQAAruRymJk6daqCgoI0efJkHT58WJIUFBSkYcOGacSIEZKkDh06qFOnTsVbKQAAQAFcDjMeHh4aNWqURo0apaysLElShQoVnPpUr169eKoDAAC4DpfDzOWuDDEAAAA3mssnAB8+fFj9+/dXaGioPD095eHh4XQDAAC4kVwemUlISNCBAwc0evRohYSEMGsJAAC4lcthZu3atfryyy912223lUA5AAAArnH5MFNYWJiMMSVRCwAAgMtcDjNJSUl67rnntG/fvhIoBwAAwDUuH2a67777lJ2drVq1asnX11dly5Z1Wn706NFiKw4AAOB6XA4zSUlJJVAGAABA0bgcZuLj40uiDgAAgCJx+ZyZAwcOXPPmqoMHD6pfv36qXLmyfH19ddttt2nz5s2O5QkJCbLZbE63Fi1auLwdAABwc3J5ZCYiIuKa15bJ++bswjh27JhiYmLUpk0bLV26VIGBgfrxxx9VsWJFp36dOnVScnKy476Xl5erZQMAgJuUy2Fm69atTvfPnz+vrVu3asqUKZowYYJL65o0aZLCwsKcgkpERES+fna7XcHBwa6WCgAA/gBcDjONGzfO1xYdHa3Q0FC98sor6tGjR6HX9cknn6hjx4669957lZqaqmrVqmnIkCF65JFHnPqtWbNGgYGBqlixomJjYzVhwgQFBgYWuM6cnBzl5OQ47ud9GSYAALg5uXzOzNVERUVp06ZNLj3mp59+0rRp0xQZGally5Zp8ODBGjp0qObNm+foExcXp7///e9atWqVXnvtNW3atElt27Z1CiyXmzhxovz9/R23sLCw37VfAACgdHN5ZObKkQ5jjA4dOqRx48YpMjLSpXXl5uYqOjpaiYmJkqQmTZpo+/btmjZtmgYMGCDp0nVt8jRo0EDR0dEKDw/XkiVLChwFGjlypIYPH+5UL4EGAICbl8thpmLFivlOADbGKCwsTB988IFL6woJCVG9evWc2urWrat//etf13xMeHi4du/eXeByu90uu93uUh0AAMC6XA4zq1evdrpfpkwZVa1aVbVr15anp2uri4mJ0a5du5za0tLSFB4eftXHZGZmKj09XSEhIS5tCwAA3JxcSh/nz5/XnDlzNHr0aNWsWfN3b3zYsGFq1aqVEhMT1bt3b23cuFEzZ87UzJkzJUmnTp3SuHHj1LNnT4WEhGjfvn16/vnnVaVKFd1zzz2/e/sAAMD6XDoBuGzZsvr444+LbePNmjXTxx9/rIULF6pBgwZ68cUXlZSUpAceeECS5OHhoe+++0533323oqKiFB8fr6ioKK1fv15+fn7FVgcAALAulw8z3XPPPVq0aJHTSba/R9euXdW1a9cCl/n4+GjZsmXFsh0AAHBzcjnM1K5dWy+++KLWrVunpk2bqly5ck7Lhw4dWmzFAQAAXI/LYea9995TxYoVtXnzZqfvUJIkm81GmAEAADeUy2Fm7969JVEHAABAkRT5CsDnzp3Trl27dOHCheKsBwAAwCUuh5ns7Gw99NBD8vX1Vf369XXgwAFJl86Vefnll4u9QAAAgGtxOcyMHDlS27Zt05o1a+Tt7e1ov/POO5WSklKsxQEAAFyPy+fMLFq0SCkpKWrRooXT1xrUq1dPP/74Y7EWBwAAcD0uj8z8+uuvCgwMzNd++vTpfN/ZBAAAUNJcDjPNmjXTkiVLHPfzAsy7776rli1bFl9lAAAAheDyYaaJEyeqU6dO+uGHH3ThwgW9/vrr2r59u9avX6/U1NSSqBEAAOCqXB6ZadWqlb766itlZ2erVq1aWr58uYKCgrR+/Xo1bdq0JGoEAAC4KpdHZr799ls1atRIc+fOzbds0aJF6t69e3HUBQAAUCguj8x07NhRP/30U772f/3rX45vuwYAALhRXA4zjz76qNq1a6dDhw452lJSUjRgwADNmTOnOGsDAAC4LpcPM40ZM0aZmZm688479eWXX+qzzz7Tww8/rPfff189e/YsiRoBAACuyuUwI0mvv/66+vfvrxYtWujgwYNauHCh7r777uKuDQAA4LoKFWY++eSTfG3du3dXamqq+vTpI5vN5uhz1113FW+FAAAA11CoMHOtGUqzZ8/W7NmzJV26gN7FixeLpTAAAIDCKFSYyc3NLek6AAAAisTl2UwAAAClSaFGZt54441Cr3Do0KFFLgYAAMBVhQozU6dOLdTKbDYbYQYAANxQhQoze/fuLek6AAAAiuR3nTNjjJExprhqAQAAcFmRwsy8efPUsGFD+fj4yMfHR40aNdL7779f3LUBAABcV6HCzPDhw3X69GlJ0pQpU/Too4+qc+fO+vDDD5WSkqJOnTpp8ODBhT63BgAAoLgU6pyZrVu36vz585KkN998U9OmTdOAAQMcy++++27Vr19f48aN07Bhw0qmUgBuF1zeJp/jadIvXNXhanyOpym4vM3dZQB/KIUKM6tXr3b8fOjQIbVq1Spfn1atWjl9kzaAm8+gpl6q+8Ug6Qt3V1J61dWl5wnAjVOoMBMQEKC0tDRVqVJFtWvX1ocffqjnn3/eqU9KSooiIyNLpEgApcOMzed035g5qlunjrtLKbV27NypGa/1Fd9SB9w4hb7OjJ+fnyRp/Pjxuu+++/TFF18oJiZGNptNa9eu1eeff64PP/ywRIsF4F4Zp4zOVIySQm9zdyml1pmMXGWcYpYncCMVKszEx8c7fu7Zs6e+/vprTZ06VYsWLZIxRvXq1dPGjRvVpEmTEisUAACgIIUKM1dq2rSp5s+fX9y1AAAAuMzlKQlt2rTRrFmzdOLEiZKoBwAAwCUuh5mGDRvqb3/7m4KDg9WzZ08tWrRI586dK4naAAAArsvlMPPGG2/o4MGDWrx4sfz8/BQfH6/g4GD95S9/UWpqaknUCAAAcFVFuvJVmTJl1KFDB82ZM0eHDx/WjBkztHHjRrVt27a46wMAALimIp0AnCcjI0MffPCB5s+fr2+//VbNmjUrrroAAAAKxeWRmaysLCUnJ6t9+/YKCwvTtGnT1K1bN6Wlpenrr78uiRoBAACuyuWRmaCgIFWqVEm9e/dWYmIiozEAAMCtXA4zixcv1p133qkyZfiiOQAA4H4uJ5IOHTooNzdXK1eu1IwZM3Ty5ElJ0i+//KJTp04Ve4EAAADX4vLIzP79+9WpUycdOHBAOTk5at++vfz8/DR58mSdPXtW06dPL4k6AbhZdna2JGnLli1uruR/zpw5o3379ikiIkI+Pj7uLkeStGPHDneXAPzhuBxmnnzySUVHR2vbtm2qXLmyo/2ee+7Rww8/7HIBBw8e1IgRI7R06VKdOXNGUVFRmjVrlpo2bSpJMsZo/Pjxmjlzpo4dO6bmzZvr7bffVv369V3eFoCi27lzpyTpkUcecXMl1pD35bwASp7LYWbt2rX66quv5OXl5dQeHh6ugwcPurSuY8eOKSYmRm3atNHSpUsVGBioH3/8URUrVnT0mTx5sqZMmaI5c+YoKipKL730ktq3b69du3bxxwK4gbp37y5JqlOnjnx9fd1bzP+3Y8cO9evXT/Pnz1fdunXdXY6Dn5+fIiMj3V0G8IfhcpjJzc3VxYsX87X//PPPLoeLSZMmKSwsTMnJyY62iIgIx8/GGCUlJWnUqFHq0aOHJGnu3LkKCgrSggULNGjQoHzrzMnJUU5OjuN+VlaWSzUBKFiVKlWKNPp6I9StW1e33367u8sA4CYunwDcvn17JSUlOe7bbDadOnVKY8eOVefOnV1a1yeffKLo6Gjde++9CgwMVJMmTfTuu+86lu/du1cZGRnq0KGDo81utys2Nlbr1q0rcJ0TJ06Uv7+/4xYWFubaDgIAAEtxOcxMnTpVqampqlevns6ePau+ffsqIiJCBw8e1KRJk1xa108//aRp06YpMjJSy5Yt0+DBgzV06FDNmzdP0qUrDEuXrm1zuaCgIMeyK40cOVInTpxw3NLT013dRQAAYCEuH2YKDQ3VN998ow8++ECbN29Wbm6uHnroIT3wwAMuzybIzc1VdHS0EhMTJUlNmjTR9u3bNW3aNA0YMMDRz2azOT3OGJOvLY/dbpfdbndxrwAAgFUV6buZfHx8NHDgQA0cOPB3bTwkJET16tVzaqtbt67+9a9/SZKCg4MlXRqhCQkJcfQ5cuRIvtEaAADwx+TyYabMzEzHz+np6RozZoyeeeYZffHFFy5vPCYmRrt27XJqS0tLU3h4uCSpRo0aCg4O1ooVKxzLz507p9TUVLVq1crl7QEAgJtPocPMd999p4iICAUGBqpOnTr65ptv1KxZM02dOlUzZ85U27ZttWjRIpc2PmzYMG3YsEGJiYnas2ePFixYoJkzZ+qxxx6TdOnw0lNPPaXExER9/PHH+v7775WQkCBfX1/17dvXpW0BAICbU6HDzLPPPquGDRsqNTVVrVu3VteuXdW5c2edOHFCx44d06BBg/Tyyy+7tPFmzZrp448/1sKFC9WgQQO9+OKLSkpK0gMPPOC03aeeekpDhgxRdHS0Dh48qOXLl3ONGQAAIEmyGWNMYTpWqVJFq1atUqNGjXTq1ClVqFBBGzduVHR0tKRLVwdt0aKFjh8/XpL1uiwrK0v+/v46ceKEKlSo4O5yABSjLVu2qGnTptq8eTPXmQFuMq58fhd6ZObo0aOOE3LLly+vcuXKKSAgwLG8UqVKji+dBAAAuFFcOgH4yunQV5seDQAAcKO4NDU7ISHBcQ2Xs2fPavDgwSpXrpwkOX2FAAAAwI1S6DATHx/vdL9fv375+lx+oTsAAIAbodBh5vIvgwQAACgtXL5oHgAAQGlCmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJbm1jAzbtw42Ww2p1twcLBjeUJCQr7lLVq0cGPFAACgtPF0dwH169fXypUrHfc9PDyclnfq1EnJycmO+15eXjesNgAAUPq5Pcx4eno6jcZcyW63X3P5lXJycpSTk+O4n5WV9bvqAwAApZvbz5nZvXu3QkNDVaNGDd1///366aefnJavWbNGgYGBioqK0iOPPKIjR45cc30TJ06Uv7+/4xYWFlaS5QMAADezGWOMuza+dOlSZWdnKyoqSocPH9ZLL72knTt3avv27apcubJSUlJUvnx5hYeHa+/evRo9erQuXLigzZs3y263F7jOgkZmwsLCdOLECVWoUOFG7RqAG2DLli1q2rSpNm/erNtvv93d5QAoRllZWfL39y/U57dbDzPFxcU5fm7YsKFatmypWrVqae7cuRo+fLjuu+8+x/IGDRooOjpa4eHhWrJkiXr06FHgOu12+1WDDgAAuPm4/TDT5cqVK6eGDRtq9+7dBS4PCQlReHj4VZcDAIA/nlIVZnJycrRjxw6FhIQUuDwzM1Pp6elXXQ4AAP543Bpmnn76aaWmpmrv3r36+uuv1atXL2VlZSk+Pl6nTp3S008/rfXr12vfvn1as2aNunXrpipVquiee+5xZ9kAAKAUces5Mz///LP69Omj3377TVWrVlWLFi20YcMGhYeH68yZM/ruu+80b948HT9+XCEhIWrTpo1SUlLk5+fnzrIBAEAp4tYw88EHH1x1mY+Pj5YtW3YDqwEAAFZUqs6ZAQAAcBVhBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWJqnuwsA8MeSnZ2tnTt3Fsu6duzY4fRvcahTp458fX2LbX0ASh5hBsANtXPnTjVt2rRY19mvX79iW9fmzZt1++23F9v6AJQ8wgyAG6pOnTravHlzsazrzJkz2rdvnyIiIuTj41Ms66xTp06xrAfAjWMzxhh3F1GSsrKy5O/vrxMnTqhChQruLgcAABSCK5/fnAAMAAAsjTADAAAsjTADAAAsjTADAAAsza1hZty4cbLZbE634OBgx3JjjMaNG6fQ0FD5+PiodevW2r59uxsrBgAApY3bR2bq16+vQ4cOOW7fffedY9nkyZM1ZcoUvfXWW9q0aZOCg4PVvn17nTx50o0VAwCA0sTt15nx9PR0Go3JY4xRUlKSRo0apR49ekiS5s6dq6CgIC1YsECDBg0qcH05OTnKyclx3M/KyiqZwgEAQKng9pGZ3bt3KzQ0VDVq1ND999+vn376SZK0d+9eZWRkqEOHDo6+drtdsbGxWrdu3VXXN3HiRPn7+ztuYWFhJb4PAADAfdwaZpo3b6558+Zp2bJlevfdd5WRkaFWrVopMzNTGRkZkqSgoCCnxwQFBTmWFWTkyJE6ceKE45aenl6i+wAAANzLrYeZ4uLiHD83bNhQLVu2VK1atTR37ly1aNFCkmSz2ZweY4zJ13Y5u90uu91eMgUDAIBSx+2HmS5Xrlw5NWzYULt373acR3PlKMyRI0fyjdYAAIA/rlIVZnJycrRjxw6FhISoRo0aCg4O1ooVKxzLz507p9TUVLVq1cqNVQIAgNLErYeZnn76aXXr1k3Vq1fXkSNH9NJLLykrK0vx8fGy2Wx66qmnlJiYqMjISEVGRioxMVG+vr7q27evO8sGAACliFvDzM8//6w+ffrot99+U9WqVdWiRQtt2LBB4eHhkqRnn31WZ86c0ZAhQ3Ts2DE1b95cy5cvl5+fX6G3kfel4EzRBgDAOvI+t/M+x6/FZgrTy8J+/vlnpmcDAGBR6enpuuWWW67Z56YPM7m5ufrll1/k5+d3zVlQAKwnKytLYWFhSk9PV4UKFdxdDoBiZIzRyZMnFRoaqjJlrn2K700fZgDcvLKysuTv768TJ04QZoA/sFI1mwkAAMBVhBkAAGBphBkAlmW32zV27Fiu+g38wXHODAAAsDRGZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgBYzhdffKFu3bopNDRUNptNixYtcndJANyIMAPAck6fPq3GjRvrrbfecncpAEoBT3cXAACuiouLU1xcnLvLAFBKMDIDAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjdlMACzn1KlT2rNnj+P+3r179c033yggIEDVq1d3Y2UA3MFmjDHuLgIAXLFmzRq1adMmX3t8fLzmzJlz4wsC4FaEGQAAYGmcMwMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACzt/wFjAPoCRKv8FgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#R1.12 Box-Whisker-Plot Bevölkerungsstand\n",
"plt.boxplot(sample_data.Bevölkerungsstand / 10**6)\n",
"plt.title(\"Boxplot Bevölkerungsstand Deutschland\")\n",
"plt.ylabel(\"Bevölkerung in Millionen\")\n",
"plt.savefig('boxplot.png')\n",
"plt.show()\n",
"\n",
"#Befehl funktioniert nicht für Variable \"Jahr\""
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "70b57b19-f047-48bd-acde-7488415001c5",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVnUlEQVR4nO3deViUVf8/8PewDfsAIgwUIeGKuOZOhZoamStpT+ICmj7mkhWaZmlCmmsqPY+laaWWqVQuWf60XFETlVzKXVRcKsBEBQQBgfP7wy/3w8AMzMAMMze8X9c11+Xc95l7PodR58O5P+cchRBCgIiIiEimrMwdABEREVF1MJkhIiIiWWMyQ0RERLLGZIaIiIhkjckMERERyRqTGSIiIpI1JjNEREQka0xmiIiISNaYzBAREZGsMZkh2VizZg0UCoXGo379+ujatSt++umnGokhODgYXbt2BQBERUXB2dm5XJuuXbtKbQDg2rVrUCgU+Oijj2okRrn79NNPsWbNGrPGEBMTA4VCUWm7qKgojb+PTk5OaNCgAfr164fVq1cjPz/f5LHm5uYiJiYG+/fvN9l76Pq7ro1CoUBMTIzJYqlIVFQUGjRoYJb3JvOyMXcARIZavXo1mjZtCiEE0tLSsGzZMvTt2xfbtm1D3759Tfre69evh43No382M2fOxIQJE0z6fnXRp59+Ck9PT0RFRZk7FL04ODhg7969AIAHDx7g5s2b2LFjB8aMGYPFixdj586dePzxx032/rm5uYiNjQUAjSSaqC5hMkOyExwcjHbt2knPw8LC4O7ujg0bNpg8mWnZsqX058DAQAQGBpr0/fSVm5sLR0dHc4dRJ1lZWaFTp04ax0aMGIGRI0eiT58+GDRoEI4cOWKm6IjqBt5mItmzt7eHnZ0dbG1tNY4XFBRgzpw5aNq0KZRKJerXr4+RI0fin3/+kdoMGDAA/v7+KC4uLnfdjh07om3bttLzvLw8TJ8+HQEBAbCzs8Njjz2GCRMm4N69ewbH/PDhQ0RGRsLZ2Vm6RSaEwKefforWrVvDwcEB7u7uGDRoEK5evarx2q5duyI4OBgHDhxAly5d4OjoiFGjRgHQPcTfoEEDjZGOklt2+/btw7hx4+Dp6Yl69eohPDwcf//9t8Zr8/PzMXnyZKjVajg6OuLZZ5/F8ePHy10zNzcXU6ZMQUBAAOzt7eHh4YF27dphw4YNUpurV6/ilVdega+vL5RKJby9vfHcc8/h1KlTUpxnz55FQkKCdOum5LZBXl4eJk+ejNatW0OlUsHDwwOdO3fGDz/8UK6/CoUCEydOxNdff41mzZrB0dERrVq10no7cvv27WjdujWUSiUCAgKMdjuwV69eGDNmDI4ePYoDBw5onIuPj0fnzp3h5OQEZ2dnPP/88zh58qRGm7K3K0uUvpVy7do11K9fHwAQGxsr/cxKPpd//vkH//73v+Hn5yf9GwgJCcHu3bs1rrlz504899xzUKlUcHR0RLNmzTBv3rxy73358mX07t0bzs7O8PPzw+TJkyu9lfbPP/9g/PjxCAoKgrOzM7y8vNC9e3ccPHhQo13p27FLlixBQEAAnJ2d0blzZ63J4Jo1a9CkSRMolUo0a9YMX331VYVxUO3GkRmSnaKiIhQWFkIIgfT0dCxatAg5OTmIiIiQ2hQXF6N///44ePAgpk6dii5duuD69euYNWsWunbtit9++w0ODg4YNWoU+vfvj71796JHjx7S6y9cuIBjx47hP//5D4BHicaAAQOwZ88eTJ8+Hc888wz++OMPzJo1C4mJiUhMTIRSqdQr/nv37iE8PBznz59HQkICnnrqKQDA2LFjsWbNGkyaNAkLFizAnTt38MEHH6BLly74/fff4e3tLV0jNTUVw4YNw9SpUzF37lxYWVXt95LRo0fjxRdfxPr163Hz5k28/fbbGDZsmHTbBABGjhyJ+Ph4TJ06Fd27d8e5c+cwcOBAZGVlaVwrOjoaX3/9NebMmYM2bdogJycHZ86cQUZGhtSmd+/eKCoqwsKFC/HEE0/g9u3bOHz4sJQQbtmyBYMGDYJKpcKnn34KANLPNT8/H3fu3MGUKVPw2GOPoaCgALt370Z4eDhWr16NESNGaMSzfft2JCUl4YMPPoCzszMWLlyIgQMH4uLFi3jyyScBAHv27EH//v3RuXNnbNy4UYotPT29Sj/Psvr164dPP/0UBw4cwLPPPgsAmDt3LmbMmIGRI0dixowZKCgowKJFi/DMM8/g2LFjCAoK0vv6Pj4+2LlzJ8LCwvDqq69i9OjRACAlOMOHD8eJEyfw4YcfonHjxrh37x5OnDih8Zl88cUXGDNmDEJDQ7FixQp4eXnh0qVLOHPmjMZ7PXz4EP369cOrr76KyZMn48CBA5g9ezZUKhXef/99nTHeuXMHADBr1iyo1Wrcv38fW7ZsQdeuXbFnz55yCdsnn3yCpk2bIi4uDsCj27m9e/dGSkoKVCoVgEeJzMiRI9G/f38sXrwYmZmZiImJQX5+fpX/LZDMCSKZWL16tQBQ7qFUKsWnn36q0XbDhg0CgNi0aZPG8aSkJAFAav/w4UPh7e0tIiIiNNpNnTpV2NnZidu3bwshhNi5c6cAIBYuXKjRLj4+XgAQK1eulI6FhoaK0NBQ6XlKSooAIBYtWiRSUlJEUFCQCAoKEteuXZPaJCYmCgBi8eLFGte/efOmcHBwEFOnTtW4PgCxZ8+ecj8jAGLWrFnljvv7+4vIyEjpecnPcvz48RrtFi5cKACI1NRUIYQQZ8+eFQDEtGnTNNqV/HxLXzM4OFgMGDCg3HuXuH37tgAg4uLidLYRQojmzZtr/Px0KSwsFA8fPhSvvvqqaNOmjcY5AMLb21tkZWVJx9LS0oSVlZWYN2+edKxjx47C19dXPHjwQDqWlZUlPDw8hD7/PUZGRgonJyed58+fPy8AiHHjxgkhhLhx44awsbERr7/+uka77OxsoVarxcsvvywdK/v3qPR7+vv7S8//+ecfnZ+7s7OzePPNN3XGl52dLVxdXcXTTz8tiouLdbaLjIwUAMS3336rcbx3796iSZMmGsd0xVKi5HN77rnnxMCBA6XjJf9OWrRoIQoLC6Xjx44dEwDEhg0bhBBCFBUVCV9fX9G2bVuNmK9duyZsbW01fjZUdzCFJdn56quvkJSUhKSkJOzYsQORkZGYMGECli1bJrX56aef4Obmhr59+6KwsFB6tG7dGmq1Wpr5YWNjg2HDhmHz5s3IzMwE8Gjk5+uvv0b//v1Rr149AJBGKsoWpQ4ePBhOTk7Ys2dPpXGfOHECnTp1gre3N3799Vf4+/trxKtQKDBs2DCNeNVqNVq1alVupoq7uzu6d+9u6I+unH79+mk8L6kJun79OgAgISEBAPDyyy9rtBs0aJBUCF2iQ4cO2LFjB9555x3s378fDx480Djv4eGBwMBALFq0CEuWLMHJkye13t6ryHfffYeQkBA4OzvDxsYGtra2+OKLL3D+/Plybbt16wYXFxfpube3N7y8vKS+5eTkICkpCeHh4bC3t5faubi4GK32Sgih8fznn39GYWEhRowYofE529vbIzQ01Ogzkjp06IA1a9Zgzpw5OHLkCB4+fKhx/vDhw8jKysL48eMrnb2lUCjK/Vxatmwp/TwrsmLFCrRt2xb29vbS57Znzx6tn9uLL74Ia2trjfcA/vd38uLFi/j7778RERGhEbO/vz+6dOlSaSxUOzGZIdlp1qwZ2rVrh3bt2iEsLAyfffYZevXqhalTp0q3K9LT03Hv3j2plqb0Iy0tDbdv35auN2rUKOTl5WHjxo0AHn3hpKamYuTIkVKbjIwM2NjYSMP3JRQKBdRqtcawvS67du1Ceno6Ro8eDTc3N41z6enpEELA29u7XLxHjhzRiBd4dHvBGEqStRIlt3RKEpGSfpW+xQU8SgLLvvY///kPpk2bhq1bt6Jbt27w8PDAgAEDkJycDODRz2rPnj14/vnnsXDhQrRt2xb169fHpEmTkJ2dXWmsmzdvxssvv4zHHnsM69atQ2JiIpKSkqTPr7K+lfSvpG93795FcXEx1Gp1uXbajlVFyRewr68vAEi3r9q3b1/uc46Pjy/3OVdXfHw8IiMj8fnnn6Nz587w8PDAiBEjkJaWBgBS/Zg+s60cHR01kj7g0c9T28++tCVLlmDcuHHo2LEjNm3ahCNHjiApKQlhYWHlEl5A/7+TpvzcSH5YM0O1QsuWLfHzzz/j0qVL6NChg1TQunPnTq3tS//GHhQUhA4dOmD16tUYO3YsVq9eDV9fX/Tq1UtqU69ePRQWFuKff/7RSGjE/00Pb9++faUxvv3227hy5Yr0W3npGg9PT08oFAocPHhQa+1N2WO6fotWKpVaCzL1Sba0KfliSU9Px2OPPSYdLywsLHdNJycnxMbGIjY2Funp6dIoTd++fXHhwgUAj357/uKLLwAAly5dwrfffouYmBgUFBRgxYoVFcaybt06BAQEID4+XqP/VV3Lxd3dHQqFQvpiL03bsarYtm0bgP9Nmfb09AQAfP/99xojc9rY29tLo4WlGZLweHp6Ii4uDnFxcbhx4wa2bduGd955B7du3cLOnTulv8t//vmn3tc01Lp169C1a1csX75c47g+Caw2JX8nTfm5kfxwZIZqhZLZMCX/Offp0wcZGRkoKiqSRnFKP5o0aaLx+pEjR+Lo0aM4dOgQfvzxR0RGRmoMdT/33HMAHv3HXNqmTZuQk5Mjna+IlZUVPvvsM7zxxhuIiorS+M+9T58+EELgr7/+0hpvixYt9Po5NGjQAH/88YfGsb179+L+/ft6vb6skqLV+Ph4jePff/89CgsLdb7O29sbUVFRGDJkCC5evIjc3NxybRo3bowZM2agRYsWOHHihHS89OhJaQqFAnZ2dhqJTFpamtbZTPpwcnJChw4dsHnzZo3RhezsbPz4449VumZpu3btwueff44uXbrg6aefBgA8//zzsLGxwZUrV7R+zqWXHGjQoAEuXbqkkaxlZGTg8OHDGu9TduRClyeeeAITJ05Ez549pZ93ly5doFKpsGLFinK3xIxFoVCUS8b/+OMPJCYmVul6TZo0gY+PDzZs2KAR8/Xr18v9bKju4MgMyc6ZM2ekL9KMjAxs3rwZu3btwsCBAxEQEAAAeOWVV/DNN9+gd+/eeOONN9ChQwfY2trizz//xL59+9C/f38MHDhQuuaQIUMQHR2NIUOGID8/v1xtTM+ePfH8889j2rRpyMrKQkhIiDSbqU2bNhg+fLje8S9evBguLi4YP3487t+/j7fffhshISH497//jZEjR+K3337Ds88+CycnJ6SmpuLQoUNo0aIFxo0bV+m1hw8fjpkzZ+L9999HaGgozp07h2XLlkmzQAzVvHlzDBkyBIsXL4a1tTW6d++Os2fPYvHixVCpVBozRzp27Ig+ffqgZcuWcHd3x/nz5/H111+jc+fOcHR0xB9//IGJEydi8ODBaNSoEezs7LB371788ccfeOedd6TrtGjRAhs3bkR8fDyefPJJ2Nvbo0WLFujTpw82b96M8ePHY9CgQbh58yZmz54NHx8f6VaWoWbPno2wsDD07NkTkydPRlFRERYsWAAnJydpFk5liouLpanD+fn5uHHjBnbs2IFvv/0WzZo1w7fffiu1bdCgAT744AO89957uHr1qrRGUnp6Oo4dOyaNbgGPPsvPPvsMw4YNw5gxY5CRkYGFCxfC1dVV4/1dXFzg7++PH374Ac899xw8PDzg6ekJd3d3dOvWDREREWjatClcXFyQlJSEnTt3Ijw8HADg7OyMxYsXY/To0ejRowfGjBkDb29vXL58Gb///rtGHVpV9enTB7Nnz8asWbMQGhqKixcv4oMPPkBAQECFCbEuVlZWmD17NkaPHo2BAwdizJgxuHfvHmJiYnibqS4zZ/UxkSG0zWZSqVSidevWYsmSJSIvL0+j/cOHD8VHH30kWrVqJezt7YWzs7No2rSpGDt2rEhOTi53/YiICAFAhISEaH3/Bw8eiGnTpgl/f39ha2srfHx8xLhx48Tdu3c12lU0m6m0RYsWCQDi/fffl459+eWXomPHjsLJyUk4ODiIwMBAMWLECPHbb79pXL958+ZaY8zPzxdTp04Vfn5+wsHBQYSGhopTp07pnM2UlJSk8fp9+/YJAGLfvn3Ssby8PBEdHS28vLyEvb296NSpk0hMTBQqlUq89dZbUrt33nlHtGvXTri7uwulUimefPJJ8dZbb0kzwtLT00VUVJRo2rSpcHJyEs7OzqJly5Zi6dKlGrNXrl27Jnr16iVcXFwEAI3ZKfPnzxcNGjQQSqVSNGvWTKxatUrMmjWr3MwjAGLChAnlfj5lfw5CCLFt2zbRsmVLYWdnJ5544gkxf/58rdfUpmSWT8nDwcFBPPHEE6Jv377iyy+/FPn5+Vpft3XrVtGtWzfh6uoqlEql8Pf3F4MGDRK7d+/WaLd27VrRrFkzYW9vL4KCgkR8fHy52UxCCLF7927Rpk0boVQqpVlmeXl54rXXXhMtW7YUrq6uwsHBQTRp0kTMmjVL5OTkaLz+//2//ydCQ0OFk5OTcHR0FEFBQWLBggUa/dQ2a0vXz770bKb8/HwxZcoU8dhjjwl7e3vRtm1bsXXr1nL90PXvRNs1hRDi888/F40aNRJ2dnaicePG4ssvv9T6s6G6QSGEicYWiajWOnz4MEJCQvDNN99orO9DRGQOTGaIqEK7du1CYmIinnrqKTg4OOD333/H/PnzoVKp8Mcff5Sb4UJEVNNYM0NEFXJ1dcUvv/yCuLg4ZGdnw9PTEy+88ALmzZvHRIaILAJHZoiIiEjWODWbiIiIZI3JDBEREckakxkiIiKStVpfAFxcXIy///4bLi4ulW6kRkRERJZBCIHs7Gz4+vpqLNCpTa1PZv7++2/4+fmZOwwiIiKqgps3b1a6GWqtT2ZKNhS8efNmuWXAiYiIyDJlZWXBz89PY2NgXWp9MlNya8nV1ZXJDBERkczoUyLCAmAiIiKSNSYzREREJGtMZoiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREckakxkiIiKStVq/AjAREREZX1GxwLGUO7iVnQcvF3t0CPCAtZV5NnRmMkNEREQ6kxNtx3edS0Psj+eQmpknvd5HZY9ZfYMQFuxT47EzmSEiIqojdCUsO8+kak1O+rXywbbfUzWOuzna4l7uw3LXTsvMw7h1J7B8WNsaT2gUQghRo+9Yw7KysqBSqZCZmcmNJomIqM6qKGFZeSAFxkgGFADUKnscmta92recDPn+ZgEwERFRLbfzTCrGrTuhkcgAQGpmHj4zUiIDAOL/rnks5Y6Rrqgf3mYiIiKqZUrfTvJ0UiJm2zmjJSz6uJWdV3kjI2IyQ0REVItou51U07xc7Gv0/ZjMEBGRSRgyO8ZcU3rlruzP8m5OASasP1GjozClldTMdAjwqNH3ZTJDRERVZozZMaWn9DIB0p+2n7GVAmZNZABgVt+gGv9sOJuJiIiqxFizY0q+9v79bIDWRKeyBKguKinoNeYXuAL6JUIl7cpO0Tb2Z2LI9zeTGSIiqpQl3s4AgE8i2sDdSVmnRmyKigWeXrDXKDUx1UkkewapTTpaxmSmFCYzRET603e1VysFUGwB3x5l49DnlpXclO1HsRAY+vlRo1zbkm/xMZkphckMEdVVhn45abttpGu1V0tV2UiD3G5Naf1MHGxx74Hhn4kCgLerEotfbo3b9/MtPsFjMlMKkxkiqu0M2TtH120DY64Ca6nkdmvKmHUxJb0zx1YDVcVkphQmM0RUm9WG0ZSaVtGtKUtR3boYOfSxMoZ8f3NqNhGRDOgafdH2m7ulJDL6zo6paWVrfUo2SKxoxKam60aOpdypUiJTEtGyIfIYfTIWJjNERBZO2+iL2lWJvMJii0sWqjo7puQ2F1DzCVDJ+03ccFLraAYArbfsTDnSoe92AGXrZ9QyHIExBt5mIiKyYKZYT8SYqjKbyBgL7dXEbKqKRpZMXYOSeCUDQ1YdqbTdN692hJWVolaOwLBmphQmM0QkJ2U3CJz83e9IyzLfHju6mKqYVt8EqGSdG8C8K96qVfY4NK270ROIkpqZtMw8rf0z5XtbCtbMEBHJkCVsEFh2NELXaq+mup1hbaVA58B6eh1fbtW2whWIAdMmOgJAamYejqXc0RpzdVhbKTCrbxDGrTuh9TMBzLNtgKViMkNEZAaWtKJuRXUu6hpa7bUqwoJ9dMbV5gn3GlvoT9/6FkOFBftg+bDyCVtdrYupCG8zERHVMF0bBBrri7aivXOqutGjHNXUrakNYzoZZWTG0lbgNTfWzJTCZIaILImxF0JTOdrC3sZao66msr1z6uqXI2DcRNKYdSu6ip/r8ggMk5lSmMwQkbmUTRqe8ndH6KJ9Rt0gcPmwthZ5C8iS6TtiU7pWRVfdijFmM+lKcOW4aq8xsQCYiMjMtP2m7eFkizs5xlnQrmzdhLELUGszfYuJ1RWsM2OsupWiYoHYH89pHakTeJTQxP54Dj2D1ExQK8BkhojIyHT9pl3VREZuGwTKUUXFxABMNvpV2Uq/ppwxVZswmSEiMqKKftOuipKvy5h+zRHS0NNIVyVtdE0Lr+ycoUrf5kpOv6/Xa0w1Y6q2YDJDRGREVd1Tp0TZYlROw61dqrqWkJeLvYkiqh2YzBARGVFVf4OuqxsE1laGbAxakZIZUx0CPEwVaq3AZIaIyIj0/Q3aw8kOd3IKpOccgak9jLUxKFf61R+TGSIiI+oQ4AEflX2le+okvN0Nx6/f5QiMzOm7knNaVr7B12aCqz8mM0RE1VT2C23mi0GYsL7iPXXsbKw4O0XmdC3AV53i74ndAtHI24UJroGYzBARVYOulVsr2ueIv2nLn67p99XdkiKkYX0muVXAZIaIqIp0faGlZeZh5YEUfBLBYt7ayNjT7wEW+laXlTnfvLCwEDNmzEBAQAAcHBzw5JNP4oMPPkBxcbHURgiBmJgY+Pr6wsHBAV27dsXZs2fNGDURUeUrtwLA7O3n0SHAA/1bP4bOgfWYyNQS1Z1+XxYLfavPrMnMggULsGLFCixbtgznz5/HwoULsWjRIvz3v/+V2ixcuBBLlizBsmXLkJSUBLVajZ49eyI7O9uMkRNRXWfIyq1Uu1Rn+r2boy3Urpoz3tQq+zq7/5KxmPU2U2JiIvr3748XX3wRANCgQQNs2LABv/32G4BHozJxcXF47733EB4eDgBYu3YtvL29sX79eowdO9ZssRNR3cOVWwmo2gJ2JeMt88NbcGNQEzBrMvP0009jxYoVuHTpEho3bozff/8dhw4dQlxcHAAgJSUFaWlp6NWrl/QapVKJ0NBQHD58mMkMEdUYrtxKJSqbfg9UvpIzi3yNy6zJzLRp05CZmYmmTZvC2toaRUVF+PDDDzFkyBAAQFpaGgDA29tb43Xe3t64fv261mvm5+cjP/9/8/mzsrJMFD0R1RW6Cn0rwoLO2svaSoFZfYMwbp3u6fdcyblmmTWZiY+Px7p167B+/Xo0b94cp06dwptvvglfX19ERkZK7RQKzb8AQohyx0rMmzcPsbGxJo2biOqOqsxcYUFn7RcW7IPlw9qWX+mX0+/NQiGEMObsMoP4+fnhnXfewYQJE6Rjc+bMwbp163DhwgVcvXoVgYGBOHHiBNq0aSO16d+/P9zc3LB27dpy19Q2MuPn54fMzEy4urqatkNEVOskXsnAkFVHDHqND7/Q6gxtezAxgTWOrKwsqFQqvb6/zToyk5ubCysrzQlV1tbW0tTsgIAAqNVq7Nq1S0pmCgoKkJCQgAULFmi9plKphFKpNG3gRFRn6FvAy5Vb6yZrKwXrXyyAWZOZvn374sMPP8QTTzyB5s2b4+TJk1iyZAlGjRoF4NHtpTfffBNz585Fo0aN0KhRI8ydOxeOjo6IiIgwZ+hEVEfoW8DLlVuJzMesycx///tfzJw5E+PHj8etW7fg6+uLsWPH4v3335faTJ06FQ8ePMD48eNx9+5ddOzYEb/88gtcXFzMGDkR1RX6bhzJQl8i8zFrzUxNMOSeGxGRNiWzmQDtM1e44BmR8Rny/W3WFYCJiOSgZOaKWsWVW4ksETeaJCLSQ1iwD1duJbJQTGaIiPTEmStElom3mYiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREckakxkiIiKSNSYzREREJGtMZoiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREckakxkiIiKSNSYzREREJGtMZoiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREckakxkiIiKSNSYzREREJGtMZoiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREckakxkiIiKSNSYzREREJGtMZoiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREcmaWZOZBg0aQKFQlHtMmDABABAVFVXuXKdOncwZMhEREVkYG3O+eVJSEoqKiqTnZ86cQc+ePTF48GDpWFhYGFavXi09t7Ozq9EYiYiIyLKZNZmpX7++xvP58+cjMDAQoaGh0jGlUgm1Wl3ToREREZFMVCmZKS4uxuXLl3Hr1i0UFxdrnHv22WerFEhBQQHWrVuH6OhoKBQK6fj+/fvh5eUFNzc3hIaG4sMPP4SXl1eV3oOIiIhqH4OTmSNHjiAiIgLXr1+HEELjnEKh0LhtZIitW7fi3r17iIqKko698MILGDx4MPz9/ZGSkoKZM2eie/fuOH78OJRKpdbr5OfnIz8/X3qelZVVpXiIiIhIHhSibEZSidatW6Nx48aIjY2Fj4+PxigKAKhUqioF8vzzz8POzg4//vijzjapqanw9/fHxo0bER4errVNTEwMYmNjyx3PzMyEq6trlWIjIiKimpWVlQWVSqXX97fBIzPJycn4/vvv0bBhwyoHWNb169exe/dubN68ucJ2Pj4+8Pf3R3Jyss4206dPR3R0tPQ8KysLfn5+RouViIiILIvByUzHjh1x+fJloyYzq1evhpeXF1588cUK22VkZODmzZvw8fHR2UapVOq8BUVERES1j8HJzOuvv47JkycjLS0NLVq0gK2trcb5li1bGnS94uJirF69GpGRkbCx+V849+/fR0xMDF566SX4+Pjg2rVrePfdd+Hp6YmBAwcaGjYRERHVUgYnMy+99BIAYNSoUdIxhUIBIUSVCoB3796NGzduaFwPAKytrXH69Gl89dVXuHfvHnx8fNCtWzfEx8fDxcXF0LCJiIioljK4APj69esVnvf3969WQMZmSAERERERWQaTFgBbWrJCREREdVuV9mb6+uuvERISAl9fX2mkJi4uDj/88INRgyMiIiKqjMHJzPLlyxEdHY3evXvj3r17Uo2Mm5sb4uLijB0fERERUYUMTmb++9//YtWqVXjvvfdgbW0tHW/Xrh1Onz5t1OCIiIiIKmNwMpOSkoI2bdqUO65UKpGTk2OUoIiIiIj0ZXAyExAQgFOnTpU7vmPHDgQFBRkjJiIiIiK9GTyb6e2338aECROQl5cHIQSOHTuGDRs2YN68efj8889NESMRERGRTgYnMyNHjkRhYSGmTp2K3NxcRERE4LHHHsPHH3+MV155xRQxEhEREelk8KJ5pd2+fRvFxcXw8vIyZkxGxUXziIiI5Meki+aV5unpWZ2XExEREVWbwQXA6enpGD58OHx9fWFjYwNra2uNBxEREVFNMnhkJioqCjdu3MDMmTPh4+MDhUJhiriIiIiI9GJwMnPo0CEcPHgQrVu3NkE4RERERIYx+DaTn58fqlEzTERERGRUBiczcXFxeOedd3Dt2jUThENERERkGINvM/3rX/9Cbm4uAgMD4ejoCFtbW43zd+7cMVpwRERERJUxOJnhzthERERkSQxOZiIjI00RBxEREVGVVGnRvKKiImzduhXnz5+HQqFAUFAQ+vXrx3VmiIiIqMYZnMxcvnwZvXv3xl9//YUmTZpACIFLly7Bz88P27dvR2BgoCniJCIiItLK4NlMkyZNQmBgIG7evIkTJ07g5MmTuHHjBgICAjBp0iRTxEhERESkk8EjMwkJCThy5Ag8PDykY/Xq1cP8+fMREhJi1OCIiIiIKmPwyIxSqUR2dna54/fv34ednZ1RgiIiIiLSl8HJTJ8+ffDvf/8bR48ehRACQggcOXIEr732Gvr162eKGImIiIh0MjiZ+c9//oPAwEB07twZ9vb2sLe3R0hICBo2bIiPP/7YFDESERER6WRwzYybmxt++OEHJCcn48KFCxBCICgoCA0bNjRFfEREREQVqtI6MwDQqFEjNGrUyJixEBERERlMr2QmOjoas2fPhpOTE6Kjoytsu2TJEqMERkRERKQPvZKZkydP4uHDh9KfdVEoFMaJioiIiEhPCiGEMHcQppSVlQWVSoXMzEy4urqaOxwiIiLSgyHf3wbPZiIiIiKyJHrdZgoPD9f7gps3b65yMERERESG0iuZUalUpo6DiIiIqEr0SmZWr15t6jiIiIiIqoQ1M0RERCRreo3MtGnTRu9p1ydOnKhWQERERESG0CuZGTBggInDICIiIqoarjNDREREFofrzBAREVGdoddtJg8PD1y6dAmenp5wd3evsH7mzp07RguOiIiIqDJ6JTNLly6Fi4sLACAuLs6U8RAREREZxKw1Mw0aNMD169fLHR8/fjw++eQTCCEQGxuLlStX4u7du+jYsSM++eQTNG/eXO/3YM0MERGR/MimZiYpKQmpqanSY9euXQCAwYMHAwAWLlyIJUuWYNmyZUhKSoJarUbPnj2RnZ1tzrCJiIjIguidzFhbW+v1MET9+vWhVqulx08//YTAwECEhoZCCIG4uDi89957CA8PR3BwMNauXYvc3FysX7/e4I4SERFR7aRXzQwACCHg7++PyMhItGnTxuiBFBQUYN26dYiOjoZCocDVq1eRlpaGXr16SW2USiVCQ0Nx+PBhjB071ugxEBERkfzoncwcPXoUX375JT7++GMEBARg1KhRGDp0KNzd3Y0SyNatW3Hv3j1ERUUBANLS0gAA3t7eGu28vb211tmUyM/PR35+vvQ8KyvLKPERERGRZdL7NlP79u2xfPlypKamIjo6Glu2bMHjjz+OV155Rap1qY4vvvgCL7zwAnx9fTWOl50GLoSocGr4vHnzoFKppIefn1+1YyMiIiLLZXABsL29PYYNG4Y9e/bgzJkzuHXrFsLCwqq1vsz169exe/dujB49WjqmVqsB/G+EpsStW7fKjdaUNn36dGRmZkqPmzdvVjkuIiIisnxVms30559/Ys6cOejZsycuXryIt99+u1rTnlevXg0vLy+8+OKL0rGAgACo1WqNUZ+CggIkJCSgS5cuOq+lVCrh6uqq8SAiIqLaS++amYKCAmzZsgVffPEFDh48iBdeeAFxcXHo3bs3rKyqPsO7uLgYq1evRmRkJGxs/heOQqHAm2++iblz56JRo0Zo1KgR5s6dC0dHR0RERFT5/YiIiKh20TuZ8fHxgYuLCyIjI/Hpp5/Cy8sLAHD//n2NdoaOhOzevRs3btzAqFGjyp2bOnUqHjx4gPHjx0uL5v3yyy/SasREREREeq8AXHr0RVsBbklhblFRkfGiMwKuAExERCQ/hnx/6z0ys2/fvmoHRkRERGRseiczoaGhpoyDiIiIqErMujcTERERUXUxmSEiIiJZYzJDREREssZkhoiIiGSNyQwRERHJmt6zmUrk5ORg/vz52LNnD27duoXi4mKN81evXjVacERERESVMTiZGT16NBISEjB8+HD4+PhUuIM1ERERkakZnMzs2LED27dvR0hIiCniISIiIjKIwTUz7u7u8PDwMEUsRERERAYzOJmZPXs23n//feTm5poiHiIiIiKDGHybafHixbhy5Qq8vb3RoEED2Nraapw/ceKE0YIjIiIiqozBycyAAQNMEAYRERFR1SiEEMLcQZiSIVuIExERkWUw5Pubi+YRERGRrOl1m8nDwwOXLl2Cp6cn3N3dK1xb5s6dO0YLjoiIiKgyeiUzS5cuhYuLCwAgLi7OlPEQERERGYQ1M0RERGRxWDNDREREdQaTGSIiIpI1JjNEREQka0xmiIiISNaYzBAREZGsGbydwcCBA7WuM6NQKGBvb4+GDRsiIiICTZo0MUqARERERBUxeGRGpVJh7969OHHihJTUnDx5Env37kVhYSHi4+PRqlUr/Prrr0YPloiIiKgsg0dm1Go1IiIisGzZMlhZPcqFiouL8cYbb8DFxQUbN27Ea6+9hmnTpuHQoUNGD5iIiIioNIMXzatfvz5+/fVXNG7cWOP4pUuX0KVLF9y+fRunT5/GM888g3v37hkz1irhonlERETyY9JF8woLC3HhwoVyxy9cuICioiIAgL29fYX7NxEREREZi8G3mYYPH45XX30V7777Ltq3bw+FQoFjx45h7ty5GDFiBAAgISEBzZs3N3qwRERERGUZnMwsXboU3t7eWLhwIdLT0wEA3t7eeOuttzBt2jQAQK9evRAWFmbcSImIiIi0qNZGk1lZWQBg0bUorJkhIiKSH0O+vw0emSmNyQERERGZm8EFwOnp6Rg+fDh8fX1hY2MDa2trjQcRERFRTTJ4ZCYqKgo3btzAzJkz4ePjw1lLREREZFYGJzOHDh3CwYMH0bp1axOEQ0RERGQYg28z+fn5oRo1w0RERERGZXAyExcXh3feeQfXrl0zQThEREREhjH4NtO//vUv5ObmIjAwEI6OjrC1tdU4f+fOHaMFR0RERFQZg5OZuLg4E4RBREREVDUGJzORkZGmiIOIiIioSgyumblx40aFD0P99ddfGDZsGOrVqwdHR0e0bt0ax48fl85HRUVBoVBoPDp16mTw+xAREVHtZPDITIMGDSpcW6Zk52x93L17FyEhIejWrRt27NgBLy8vXLlyBW5ubhrtwsLCsHr1aum5nZ2doWETERFRLWVwMnPy5EmN5w8fPsTJkyexZMkSfPjhhwZda8GCBfDz89NIVBo0aFCunVKphFqtNjRUIiIiqgMMTmZatWpV7li7du3g6+uLRYsWITw8XO9rbdu2Dc8//zwGDx6MhIQEPPbYYxg/fjzGjBmj0W7//v3w8vKCm5sbQkND8eGHH8LLy8vQ0ImIiKgWqtau2aUlJyejdevWyMnJ0fs19vb2AIDo6GgMHjwYx44dw5tvvonPPvsMI0aMAADEx8fD2dkZ/v7+SElJwcyZM1FYWIjjx49DqVSWu2Z+fj7y8/Ol51lZWfDz8+Ou2URERDJiyK7ZBiczWVlZGs+FEEhNTUVMTAwuXLiAU6dO6X0tOzs7tGvXDocPH5aOTZo0CUlJSUhMTNT6mtTUVPj7+2Pjxo1aR4FiYmIQGxtb7jiTGSIiIvkwJJkx+DaTm5tbuQJgIQT8/PywceNGg67l4+ODoKAgjWPNmjXDpk2bKnyNv78/kpOTtZ6fPn06oqOjpeclIzNERERUOxmczOzbt0/juZWVFerXr4+GDRvCxsawy4WEhODixYsaxy5dugR/f3+dr8nIyMDNmzfh4+Oj9bxSqdR6+4mIiIhqJ4Oyj4cPH2LNmjWYOXMmnnzyyWq/+VtvvYUuXbpg7ty5ePnll3Hs2DGsXLkSK1euBADcv38fMTExeOmll+Dj44Nr167h3XffhaenJwYOHFjt9yciIiL5M2jRPFtbW2zZssVob96+fXts2bIFGzZsQHBwMGbPno24uDgMHToUAGBtbY3Tp0+jf//+aNy4MSIjI9G4cWMkJibCxcXFaHEQERGRfBlcADxy5Ei0aNFCoy7FkhlSQERERESWwaQFwA0bNsTs2bNx+PBhPPXUU3ByctI4P2nSJEMvSURERFRlBo/MBAQE6L6YQoGrV69WOyhj4sgMERGR/Jh0ZCYlJaXKgREREREZm8G7ZpcoKCjAxYsXUVhYaMx4iIiIiAxicDKTm5uLV199FY6OjmjevDlu3LgB4FGtzPz5840eIBEREVFFDE5mpk+fjt9//x379++X9lYCgB49eiA+Pt6owRERERFVxuCama1btyI+Ph6dOnXS2NYgKCgIV65cMWpwRERERJUxeGTmn3/+gZeXV7njOTk55fZsIiIiIjI1g5OZ9u3bY/v27dLzkgRm1apV6Ny5s/EiIyIiItKDwbeZ5s2bh7CwMJw7dw6FhYX4+OOPcfbsWSQmJiIhIcEUMRIRERHpZPDITJcuXfDrr78iNzcXgYGB+OWXX+Dt7Y3ExEQ89dRTpoiRiIiISCeDR2b++OMPtGzZEmvXri13buvWrRgwYIAx4iIiIiLSi8EjM88//7zWLQs2bdok7XZNREREVFMMTmbGjRuH5557DqmpqdKx+Ph4jBgxAmvWrDFmbERENa6oWCDxSgZ+OPUXEq9koKjYoO3riMgMDL7N9P777yMjIwM9evTAwYMHsXPnTowePRpff/01XnrpJVPESERUI3aeSUXsj+eQmpknHfNR2WNW3yCEBfuYMTIiqojBu2aXGD58OI4ePYq//voL69evR//+/Y0dm1Fw12wi0sfOM6kYt+4Eyv6HWLJ61vJhbZnQENUgo++avW3btnLHBgwYgISEBAwZMgQKhUJq069fvyqETERkPkXFArE/niuXyACAwKOEJvbHc+gZpIa1FRcHJbI0eo3MWFnpV1qjUChQVFRU7aCMiSMzRFSZxCsZGLLqSKXtNozphM6B9WogIiIy+shMcXGxUQIjIrJEt7LzKm9kQDsiqlkGFwATkfEUFQscS7mDW9l58HKxR4cAD97GMAMvF3ujtiOimqVXMvOf//xH7wtOmjSpysEQ1SUVzZzpGaRmklODOgR4wEdlj7TMPK11MwoAatWjz4GILI9eNTMBAQH6XUyh0LqgnjmxZoYsUUUzZwQAN0db3Mt9KB3n9GDTK/lMAGh8LpzNRGQehnx/V3lqtlwwmSFzK3sr6Sl/d4Qu2qcxIlMZfqHWDK4zQ2Q5aiyZKXmpQmG5w99MZsictH05ejjZ4k7OwwpepV3JrY5D07pb3C0nOdb+6IpZjn0hqo2MPpuprK+++gqLFi1CcnIyAKBx48Z4++23MXz48KpcjqhW0nUrqSqJDPDo1kdqZh7W/JoCTxelWb5otX3R7zqXJrvRjMpGYDj9mkhe9BqZiY6OxuzZs+Hk5IQlS5Zg5syZmDhxIkJCQiCEwK+//opPPvkEc+bMwVtvvVUTceuNIzNUU0p/0Xs6KTH5u9+RlmXaqbw1mTRoSwDK1vaUKH1bzNKKmbnSL5E8GP02U7du3bBlyxa4ubkhICAAsbGxGDFihEabtWvXIiYmBikpKdWL3siYzFBN0PZFXxNMlTSUHYG5m1OACevLJwCVxaZytIW9jbVGUmfOUZuiYoGnF+zV+TlZ8q08orrGpDUz9vb2OHPmDBo2bKhxPDk5GS1atEBenmUtKsVkhkxN12/6NaWypEFXkqOrNkRbYmalAIy1eXRJivBJRBu4OylrdMSGK/0SyYfRa2Y8PDxw6dIleHp6omHDhvj222/x7rvvarSJj49Ho0aNqh41kQXRtwi0oj199OHhZIc7OQXS85LbNiVTtPUhgP+71aN5uyctMw+vrTuhdZp3v1Y+2PZ7armakX6tfLDyQEq59zZWIlMSLwBM3HBS47qmGrEp/Vkmp9/X6zVc6ZdIXvRKZpYuXQoXFxcAQGxsLP71r3/hwIEDCAkJgUKhwKFDh7Bnzx58++23Jg2WqCYYMj33WMqdKt1aKrmdkfB2Nxy/frfSgtqqKMkTyta0pGbm4bMD5W8H6zpuKmUTpLTMPIxbd6JKNSuGjDLpgyv9EslLlaZmHz9+HEuXLsX58+chhEBQUBAmT56MNm3amCLGauFtJjKEPsWhpW/bJKffx7J9lw16D30KTUt/Od/Ozsfs7ecNeg+5qijJ03VrTNdsKl2jTPq8P2tmiMyPi+aVwmSG9KVPcai22hRDGXo7pSQuXUvt10Zlb7/pujWmazZVVXA2E5FlMek6M926dcOwYcMwaNAgqFSqKgdJZGkqu2WkqzalIgoA3q5KLH65NW7fz69Soau1lQKz+gZh3LoTBtXS1ARd2y+oXZXIKyxGZu7DKsVbOpEBdN8CM1YiAzwakbHktXGISDeDk5kWLVpgxowZmDhxInr37o3hw4ejd+/esLOzM0V8RDXG2EWfJelKTL/mCGnoWa1rhQX7YPmwtuVup1Q3aTBU2VlN6gpmTO06l2aRCVhpE7sFopG3i0Wsf0NEVVel20zFxcXYvXs31q9fjy1btsDa2hqDBg3C0KFDERoaaoo4q4y3mUhf+k7b1ZcpZufoqhnRtkFidZRNQKo6ndrU07yri1OwiSxXjdbM5OXl4ccff8SHH36I06dPo6ioqDqXMzomM6QvY9SmmOs3/YpW59V3ZKQk0n8/G6B12nZVEzNdC/BBz7hMgYW+RJavxpKZtLQ0bNy4EevWrcOJEyfQvn17HD16tKqXMwkmM1QRY3/RmvM3fUNn+lSUsJh6s0VjbsBZGV2jTCz0JbJsJk1msrKysGnTJqxfvx779+/Hk08+iYiICAwdOrTcqsCWgMkM6aJrPRltX/SV1aZY8m/6lro7dNn3f8rfHaGL9hll1papRpmIqOaYNJlxcHCAu7s7Xn75ZQwdOhTt27evVrCmxmSGtKlsPRlttSG6alP4m77xlHwugP63xrTNpqrJUSYiMg2TJjO//PILevToASsrq2oFWVOYzFBZ1dls0JDVgalqDBkxq2z/KSKSL5PXzBQWFmL//v24cuUKIiIi4OLigr///huurq5wdnaucuCmwGSGyqruZoP8Td/0LPXWGBHVHJMumnf9+nWEhYXhxo0byM/PR8+ePeHi4oKFCxciLy8PK1asqHLgRKZizM0Gra0UnM5rYrp+xvzZE5E2Bt8reuONN9CuXTvcvXsXDg4O0vGBAwdiz549Bgfw119/YdiwYahXrx4cHR3RunVrHD9+XDovhEBMTAx8fX3h4OCArl274uzZswa/D9VdO8+k4ukFezFk1RG8sfGU3nspcbNBIiJ5MHhk5tChQ/j111/Lrfjr7++Pv/76y6Br3b17FyEhIejWrRt27NgBLy8vXLlyBW5ublKbhQsXYsmSJVizZg0aN26MOXPmoGfPnrh48aK0kzcRUPGCclXZbLBDgIepQiUiIiMyOJkpLi7WujDen3/+aXBysWDBAvj5+WH16tXSsQYNGkh/FkIgLi4O7733HsLDwwEAa9euhbe3N9avX4+xY8caGj7VUtqKRkumUxuayADArL5BrMUgIpIJg28z9ezZE3FxcdJzhUKB+/fvY9asWejdu7dB19q2bRvatWuHwYMHw8vLC23atMGqVauk8ykpKUhLS0OvXr2kY0qlEqGhoTh8+LDWa+bn5yMrK0vjQbVbyXTesrOT0rLyDd6IUK2y5xRrIiKZMXhkZunSpejWrRuCgoKQl5eHiIgIJCcnw9PTExs2bDDoWlevXsXy5csRHR2Nd999F8eOHcOkSZOgVCoxYsQIpKWlAQC8vb01Xuft7Y3r169rvea8efMQGxtraLdIpoqKBWJ/PFetRda42SARkbwZnMz4+vri1KlT2LhxI44fP47i4mK8+uqrGDp0qEZBsD6Ki4vRrl07zJ07FwDQpk0bnD17FsuXL8eIESOkdgqF5peLEKLcsRLTp09HdHS09DwrKwt+fn4GxUXycSzljs71YvQV0rA+Z8gQEcmYwckM8GgV4JEjR2LkyJHVenMfHx8EBQVpHGvWrBk2bdoEAFCr1QAe7QHl4/O/Yf9bt26VG60poVQqoVQqqxUXWbaqTLPWhoW+RES1g8HJTEZGBurVe/Rb7M2bN7Fq1So8ePAAffv2xbPPPmvQtUJCQnDx4kWNY5cuXYK/vz8AICAgAGq1Grt27UKbNm0AAAUFBUhISMCCBQsMDZ1qAW2FvlXBQl8iotpD7wLg06dPo0GDBvDy8kLTpk1x6tQptG/fHkuXLsXKlSvRvXt3bN261aA3f+utt3DkyBHMnTsXly9fxvr167Fy5UpMmDABwKPbS2+++Sbmzp2LLVu24MyZM4iKioKjoyMiIiIMei+SP12FvhVR4NG+PWpXzTVjWOhLRFR76L2dwQsvvAAbGxtMmzYN69atw08//YRevXrh888/BwC8/vrrOH78OI4cqXyZ+NJ++uknTJ8+HcnJyQgICEB0dDTGjBkjnRdCIDY2Fp999hnu3r2Ljh074pNPPkFwcLBe1+d2BrVDZfspaVN6A0ju3UNEJC8m2ZvJ09MTe/fuRcuWLXH//n24urri2LFjaNeuHQDgwoUL6NSpE+7du1ftDhgTk5naQd/9lErjBpBERPJlkr2Z7ty5IxXkOjs7w8nJCR4e/yucdHd3R3Z2dhVDJqqYrn2SyuI0ayKiusegAuCy06F1TY8mMjZ990niNGsiorrHoGQmKipKmvacl5eH1157DU5OTgAerbxLZCodAjzgo7JHWmae1gXyOM2aiKju0juZiYyM1Hg+bNiwcm1KL3RHVB3aNo2c1TcI49adgALQSGg4zZqIqG7TuwBYrlgALD/a1pIpKeYFoPMcC32JiGoPk8xmkismM/JSspZM2b+UnGZNRFS3mGQ2E5GpVbRppMCjhCb2x3PoGaRmkS8REUn0XgGYyNQq2zRSAEjNzMOxlDs1FxQREVk8JjNkMfRdS0bfdkREVDcwmSGLoe9aMvq2IyKiuoE1M2RWpadgezopoXa1R3oW15IhIiL9MZkhs9E2BdvN0VYq9uVaMkREpA8mM2QWuqZgZ+Y+BACoHG1x7//+DDwakeFaMkREpA2TGapx+kzBtrexwjejO+L2/XyuJUNERBViMkM1Tp8p2GlZ+bBSKNC/9WM1FxgREckSZzNRjeMUbCIiMiaOzFCNKD1r6Xa2fjuscwo2ERHpg8kMmZy2WUtWCqBYx65gnIJNRESGYDJDJqVr1lJFiQzAKdhERKQ/1syQyVQ0a6lE2XxFrbLH8mFtOQWbiIj0xpEZMpnKZi0Bj0ZoZr7YDJ4uSk7BJiKiKmEyQyaj72wkTxclp2ATEVGV8TYTmQw3jiQioprAkRkymtLTr71c7PGUvzt8VPZIy+TGkUREZDpMZsgotE2/9lHZo18rH6w8kMKNI4mIyGR4m4mqrWT6ddli37TMPKw8kIJ/PxsAtUrzVhJnLRERkbFwZIaqRZ9NI7f9noqEt7vh+PW70i0ozloiIiJjYTJD1aLPppGpmXk4fv0uOgfWq7nAiIiozuBtJqoWbhpJRETmxmSGqoXTr4mIyNx4m4kMVnoKtqeTEmpXe6Rncfo1ERGZB5MZMoi2KdhujrZSsS+nXxMRUU1jMkN607UDdmbuQwCAytEW9/7vz8CjEZlZfYM4/ZqIiEyKyQzpRZ8p2PY2VvhmdEfcvp/P6ddERFRjmMyQXvSZgp2WlQ8rhYKbRhIRUY3ibCbSC6dgExGRpWIyQ3rhFGwiIrJUvM1EOnEKNhERyQGTGdKKU7CJiEgumMxQOZyCTUREcsJkhjRwCjYREcmNWQuAY2JioFAoNB5qtVo6HxUVVe58p06dzBhx7WfoFOzOgfWYyBARkVmZfWSmefPm2L17t/Tc2tpa43xYWBhWr14tPbezs6ux2OoiTsEmIiK5MXsyY2NjozEaU5ZSqazwPFVP6RlLXi728HRW6vU6TsEmIiJLYfZkJjk5Gb6+vlAqlejYsSPmzp2LJ598Ujq/f/9+eHl5wc3NDaGhofjwww/h5eWl83r5+fnIz8+XnmdlZZk0fjnTNmNJ7aqEm6MtMnMfcgo2ERHJgkIIoe07q0bs2LEDubm5aNy4MdLT0zFnzhxcuHABZ8+eRb169RAfHw9nZ2f4+/sjJSUFM2fORGFhIY4fPw6lUvsIQkxMDGJjY8sdz8zMhKurq6m7JBu6ZiyVnnatawr28mFtOXOJiIhMKisrCyqVSq/vb7MmM2Xl5OQgMDAQU6dORXR0dLnzqamp8Pf3x8aNGxEeHq71GtpGZvz8/JjMlFJULPD0gr06C30VeDT92t7GGmlZ/2vjwynYRERUQwxJZsx+m6k0JycntGjRAsnJyVrP+/j4wN/fX+d54FGNja5RG3pEnxlL93If4ptX28LKSiHV03AKNhERWSKLSmby8/Nx/vx5PPPMM1rPZ2Rk4ObNm/Dx4chAdeg7E+l2Tj53wCYiIotn1nVmpkyZgoSEBKSkpODo0aMYNGgQsrKyEBkZifv372PKlClITEzEtWvXsH//fvTt2xeenp4YOHCgOcOWPW4aSUREtYlZR2b+/PNPDBkyBLdv30b9+vXRqVMnHDlyBP7+/njw4AFOnz6Nr776Cvfu3YOPjw+6deuG+Ph4uLi4mDNsWeKmkUREVFuZNZnZuHGjznMODg74+eefazCa2oubRhIRUW1mUTUzZHzcNJKIiGo7JjO1GDeNJCKiuoDJTC1m6KaRREREcsRkRobK7qekazSFm0YSEVFdwGRGZrQV8+pamZdTsImIqC4w6zozZJiSYt6yt47SMvMwbt0J7DyTiqJigcQrGfjh1F8oLhZQu9pDVwWMAo8SIU7BJiIiOePIjEzoU8z7zubTiNl2TmM/JU7BJiKi2o7JjEzou58S8FDjOKdgExFRbcdkRiaqWqTLKdhERFTbMZmxYKVnLd3Ozq/ydTgFm4iIajMmMxZK26wlKwVQrK1oRk+cgk1ERLURkxkLpGsLguokMgCnYBMRUe3EqdkWpqJZSyXKlrqoXZVwc7TlFGwiIqqTODJjYSqbtQQ8GqGZ+WIzeLoopWLeXefSMG7dCU7BJiKiOofJjAUoXeibnH5fr9d4uig1innDgn2wfFjbcnU2nIJNRES1HZMZM9NW6KsPbfUvYcE+6Bmk1mvfJiIiotqCyYwZ6Sr0rYgCj0ZbdNW/WFsp0DmwnlHiIyIikgMWAJuJPoW+ZbH+hYiIqDyOzJiJPoW+ZbH+hYiIqDwmM2ai7wJ2E7sFopG3C+tfiIiIdGAyU0NKz1jycrGHp7NSr9eFNKzPGhgiIqIKMJmpAdpmLJUsdJeZ+1Br3Uxlhb5ERET0CJMZE9M1Yyk9K186xoXuiIiIqo6zmUyoohlLAo+SFjdHW3i7aq4Zo1bZY/mwtiz0JSIi0gNHZkyoshlLAsC93If45tW2sLJScKE7IiKiKmAyY2RV2Zrgdk6+xtYEREREpD8mM0ZkzK0JiIiISD9MZozEFFsTEBERUeVYAGwE3JqAiIjIfDgyYwTcmoCIiMh8mMxUUVUKfbk1ARERkfExmamCqhb6cmsCIiIi42MyYyAW+hIREVkWFgAbgIW+RERElocjMwZgoS8REZHlYTJjgFvZ+iUyLPQlIiKqOUxmDKDvSr0s9CUiIqo5rJkxQIcAD/io7KFrnEUBwIeFvkRERDWKyYwBrK0UmNU3CADKJTQs9CUiIjIPJjMGCgv2wfJhbaFWad5yUqvssXxYWxb6EhER1TDWzFRBWLAPegappRWAWehLRERkPmYdmYmJiYFCodB4qNVq6bwQAjExMfD19YWDgwO6du2Ks2fPmjHi/7G2UqBzYD30b/0YOgfWYyJDRERkJma/zdS8eXOkpqZKj9OnT0vnFi5ciCVLlmDZsmVISkqCWq1Gz549kZ2dbcaIiYiIyJKYPZmxsbGBWq2WHvXr1wfwaFQmLi4O7733HsLDwxEcHIy1a9ciNzcX69evN3PUREREZCnMnswkJyfD19cXAQEBeOWVV3D16lUAQEpKCtLS0tCrVy+prVKpRGhoKA4fPqzzevn5+cjKytJ4EBERUe1l1mSmY8eO+Oqrr/Dzzz9j1apVSEtLQ5cuXZCRkYG0tDQAgLe3t8ZrvL29pXPazJs3DyqVSnr4+fmZtA9ERERkXmZNZl544QW89NJLaNGiBXr06IHt27cDANauXSu1USg0C2uFEOWOlTZ9+nRkZmZKj5s3b5omeCIiIrIIZr/NVJqTkxNatGiB5ORkaVZT2VGYW7dulRutKU2pVMLV1VXjQURERLWXRSUz+fn5OH/+PHx8fBAQEAC1Wo1du3ZJ5wsKCpCQkIAuXbqYMUoiIiKyJGZdNG/KlCno27cvnnjiCdy6dQtz5sxBVlYWIiMjoVAo8Oabb2Lu3Llo1KgRGjVqhLlz58LR0RERERHmDJuIiIgsiFmTmT///BNDhgzB7du3Ub9+fXTq1AlHjhyBv78/AGDq1Kl48OABxo8fj7t376Jjx4745Zdf4OLiYs6wiYiIyIIohBDC3EGYUmZmJtzc3HDz5k3WzxAREclEVlYW/Pz8cO/ePahUqgrb1vq9mUpWC+YUbSIiIvnJzs6uNJmp9SMzxcXF+Pvvv+Hi4lLhlG5dSjLDujqyU5f7X5f7DtTt/tflvgN1u/91ue+AZfVfCIHs7Gz4+vrCyqri+Uq1fmTGysoKjz/+eLWvU9enedfl/tflvgN1u/91ue9A3e5/Xe47YDn9r2xEpoRFTc0mIiIiMhSTGSIiIpI1JjOVUCqVmDVrFpRKpblDMYu63P+63Hegbve/LvcdqNv9r8t9B+Tb/1pfAExERES1G0dmiIiISNaYzBAREZGsMZkhIiIiWWMyQ0RERLJWJ5KZAwcOoG/fvvD19YVCocDWrVs1zqenpyMqKgq+vr5wdHREWFgYkpOTNdp07doVCoVC4/HKK69otLl79y6GDx8OlUoFlUqF4cOH4969eybuXeWM0X8ASExMRPfu3eHk5AQ3Nzd07doVDx48kM5bYv+r2/dr166V+9xLHt99953UzhL7Dhjns09LS8Pw4cOhVqvh5OSEtm3b4vvvv9doY4n9N0bfr1y5goEDB6J+/fpwdXXFyy+/jPT0dI02ltj3efPmoX379nBxcYGXlxcGDBiAixcvarQRQiAmJga+vr5wcHBA165dcfbsWY02+fn5eP311+Hp6QknJyf069cPf/75p0ab2tz/lStXomvXrnB1dYVCodDaL0vrvzH6fufOHbz++uto0qQJHB0d8cQTT2DSpEnIzMzUuI4l9b1OJDM5OTlo1aoVli1bVu6cEAIDBgzA1atX8cMPP+DkyZPw9/dHjx49kJOTo9F2zJgxSE1NlR6fffaZxvmIiAicOnUKO3fuxM6dO3Hq1CkMHz7cpH3ThzH6n5iYiLCwMPTq1QvHjh1DUlISJk6cqLHEtCX2v7p99/Pz0/jMU1NTERsbCycnJ7zwwgvStSyx74BxPvvhw4fj4sWL2LZtG06fPo3w8HD861//wsmTJ6U2ltj/6vY9JycHvXr1gkKhwN69e/Hrr7+ioKAAffv2RXFxsXQtS+x7QkICJkyYgCNHjmDXrl0oLCxEr169ND7XhQsXYsmSJVi2bBmSkpKgVqvRs2dPaT87AHjzzTexZcsWbNy4EYcOHcL9+/fRp08fFBUVSW1qc/9zc3MRFhaGd999V+d7WVr/jdH3v//+G3///Tc++ugjnD59GmvWrMHOnTvx6quvaryXRfVd1DEAxJYtW6TnFy9eFADEmTNnpGOFhYXCw8NDrFq1SjoWGhoq3njjDZ3XPXfunAAgjhw5Ih1LTEwUAMSFCxeM2ofqqGr/O3bsKGbMmKHzunLof1X7Xlbr1q3FqFGjpOdy6LsQVe+/k5OT+OqrrzSu5eHhIT7//HMhhDz6X5W+//zzz8LKykpkZmZKbe7cuSMAiF27dgkh5NF3IYS4deuWACASEhKEEEIUFxcLtVot5s+fL7XJy8sTKpVKrFixQgghxL1794Stra3YuHGj1Oavv/4SVlZWYufOnUKI2t3/0vbt2ycAiLt372ocl0P/q9v3Et9++62ws7MTDx8+FEJYXt/rxMhMRfLz8wEA9vb20jFra2vY2dnh0KFDGm2/+eYbeHp6onnz5pgyZYpGBp+YmAiVSoWOHTtKxzp16gSVSoXDhw+buBdVp0//b926haNHj8LLywtdunSBt7c3QkNDNX4+cuy/IZ99iePHj+PUqVMav6HIse+A/v1/+umnER8fjzt37qC4uBgbN25Efn4+unbtCkCe/den7/n5+VAoFBqLh9nb28PKykpqI5e+l9we8PDwAACkpKQgLS0NvXr1ktoolUqEhoZKcR8/fhwPHz7UaOPr64vg4GCpTW3uvz7k0H9j9T0zMxOurq6wsXm0paOl9b3OJzNNmzaFv78/pk+fjrt376KgoADz589HWloaUlNTpXZDhw7Fhg0bsH//fsycORObNm1CeHi4dD4tLQ1eXl7lru/l5YW0tLQa6UtV6NP/q1evAgBiYmIwZswY7Ny5E23btsVzzz0n1RjIsf/6fvalffHFF2jWrBm6dOkiHZNj3wH9+x8fH4/CwkLUq1cPSqUSY8eOxZYtWxAYGAhAnv3Xp++dOnWCk5MTpk2bhtzcXOTk5ODtt99GcXGx1EYOfRdCIDo6Gk8//TSCg4MBQIrN29tbo623t7d0Li0tDXZ2dnB3d6+wTW3tvz4svf/G6ntGRgZmz56NsWPHSscsre91PpmxtbXFpk2bcOnSJXh4eMDR0RH79+/HCy+8AGtra6ndmDFj0KNHDwQHB+OVV17B999/j927d+PEiRNSG4VCUe76Qgitxy2FPv0vqQ8YO3YsRo4ciTZt2mDp0qVo0qQJvvzyS+lacuu/vp99iQcPHmD9+vXl7hsD8us7oH//Z8yYgbt372L37t347bffEB0djcGDB+P06dNSG7n1X5++169fH9999x1+/PFHODs7Q6VSITMzE23bttX4+Vh63ydOnIg//vgDGzZsKHeubIz6xF22TV3rf2XXqOp1TMEYfc/KysKLL76IoKAgzJo1q8JrVHQdU7Op8Xe0QE899RROnTqFzMxMFBQUoH79+ujYsSPatWun8zVt27aFra0tkpOT0bZtW6jV6nKzHADgn3/+KZcBW5rK+u/j4wMACAoK0nhds2bNcOPGDQCQbf8N+ey///575ObmYsSIERrH5dp3oPL+X7lyBcuWLcOZM2fQvHlzAECrVq1w8OBBfPLJJ1ixYoVs+6/PZ9+rVy9cuXIFt2/fho2NDdzc3KBWqxEQEADA8j/7119/Hdu2bcOBAwfw+OOPS8fVajWAR79dl/z7Bh7dUi6JW61Wo6CgAHfv3tUYnbl165Y0Mlmb+68PS+6/MfqenZ2NsLAwODs7Y8uWLbC1tdW4jiX1vc6PzJSmUqlQv359JCcn47fffkP//v11tj179iwePnwo/WXo3LkzMjMzcezYManN0aNHkZmZqXFLwpLp6n+DBg3g6+tbbnrfpUuX4O/vD0D+/dfns//iiy/Qr18/1K9fX+O43PsO6O5/bm4uAGjMWgMe1ZeUjNjJvf/6fPaenp5wc3PD3r17cevWLfTr1w+A5fZdCIGJEydi8+bN2Lt3r5R8lQgICIBarcauXbukYwUFBUhISJDifuqpp2Bra6vRJjU1FWfOnJHa1Ob+68MS+2+svmdlZaFXr16ws7PDtm3bNOrLAAvse01XHJtDdna2OHnypDh58qQAIJYsWSJOnjwprl+/LoR4VKW9b98+ceXKFbF161bh7+8vwsPDpddfvnxZxMbGiqSkJJGSkiK2b98umjZtKtq0aSMKCwuldmFhYaJly5YiMTFRJCYmihYtWog+ffrUeH/Lqm7/hRBi6dKlwtXVVXz33XciOTlZzJgxQ9jb24vLly9LbSyx/8bouxBCJCcnC4VCIXbs2KH1fSyx70JUv/8FBQWiYcOG4plnnhFHjx4Vly9fFh999JFQKBRi+/btUjtL7L8xPvsvv/xSJCYmisuXL4uvv/5aeHh4iOjoaI02ltj3cePGCZVKJfbv3y9SU1OlR25urtRm/vz5QqVSic2bN4vTp0+LIUOGCB8fH5GVlSW1ee2118Tjjz8udu/eLU6cOCG6d+8uWrVqZfH/7xmr/6mpqeLkyZNi1apVAoA4cOCAOHnypMjIyJDaWFr/jdH3rKws0bFjR9GiRQtx+fJljetY6mdfJ5KZkml1ZR+RkZFCCCE+/vhj8fjjjwtbW1vxxBNPiBkzZoj8/Hzp9Tdu3BDPPvus8PDwEHZ2diIwMFBMmjRJ4y+0EEJkZGSIoUOHChcXF+Hi4iKGDh1abiqfOVS3/yXmzZsnHn/8ceHo6Cg6d+4sDh48qHHeEvtvrL5Pnz5dPP7446KoqEjr+1hi34UwTv8vXbokwsPDhZeXl3B0dBQtW7YsN1XbEvtvjL5PmzZNeHt7C1tbW9GoUSOxePFiUVxcrNHGEvuurd8AxOrVq6U2xcXFYtasWUKtVgulUimeffZZcfr0aY3rPHjwQEycOFF4eHgIBwcH0adPH3Hjxg2NNrW5/7Nmzar0OpbWf2P0Xde/HQAiJSVFamdJfVcIIYRxxniIiIiIah5rZoiIiEjWmMwQERGRrDGZISIiIlljMkNERESyxmSGiIiIZI3JDBEREckakxkiIiKSNSYzRCRb165dg0KhwKlTp8wdChGZEZMZIrIoUVFRGDBggLnDICIZYTJDRHVKUVGRtEkmEdUOTGaIyGLt3LkTTz/9NNzc3FCvXj306dMHV65cKdfu6tWr6NatGxwdHdGqVSskJiZK59asWQM3Nzf89NNPCAoKglKpxPXr12uyG0RkYkxmiMhi5eTkIDo6GklJSdizZw+srKwwcODAciMr7733HqZMmYJTp06hcePGGDJkCAoLC6Xzubm5mDdvHj7//HOcPXsWXl5eNd0VIjIhG3MHQESky0svvaTx/IsvvoCXlxfOnTuH4OBg6fiUKVPw4osvAgBiY2PRvHlzXL58GU2bNgUAPHz4EJ9++ilatWpVc8ETUY3hyAwRWawrV64gIiICTz75JFxdXREQEAAAuHHjhka7li1bSn/28fEBANy6dUs6Zmdnp9GGiGoXjswQkcXq27cv/Pz8sGrVKvj6+qK4uBjBwcEoKCjQaGdrayv9WaFQAIDGrSgHBwfpOBHVPkxmiMgiZWRk4Pz58/jss8/wzDPPAAAOHTpk5qiIyBIxmSEii+Tu7o569eph5cqV8PHxwY0bN/DOO++YOywiskCsmSEii1JcXAwbGxtYWVlh48aNOH78OIKDg/HWW29h0aJF5g6PiCyQQgghzB0EEVGJsLAwNGzYEMuWLTN3KEQkExyZISKLcPfuXWzfvh379+9Hjx49zB0OEckIa2aIyCKMGjUKSUlJmDx5Mvr372/ucIhIRnibiYiIiGSNt5mIiIhI1pjMEBERkawxmSEiIiJZYzJDREREssZkhoiIiGSNyQwRERHJGpMZIiIikjUmM0RERCRrTGaIiIhI1v4/AyivM/7o6TgAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#R1.13 scatterplot Bevölkerungsstand/Jahr \n",
"plt.plot(sample_data.Jahr, sample_data.Bevölkerungsstand / 10**6, 'o')\n",
"plt.title(\"Bevölkerungsstand Deutschland\")\n",
"plt.xlabel(\"Jahr\")\n",
"plt.ylabel(\"Bevölkerung in Millionen\")\n",
"plt.savefig('scatter.png')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "4044f40b-50f0-4922-873c-1407b1d36dfa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"60334393.25"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 unteres Quartil Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.25)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "92c35c04-1ed7-49e8-8fa8-674706f9d498",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1968-09-30 12:00:00')"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 unteres Quartil Jahr\n",
"sample_data.Jahr.quantile(0.25)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "8cd41c01-1015-4774-8b8d-cc4c9cf634ea",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"82018374.25"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 oberes Quartil Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.75)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "851a4c4b-a4ac-45ca-bfb4-e7952a34f82b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2004-03-31 12:00:00')"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 oberes Quartil Jahr\n",
"sample_data.Jahr.quantile(0.75)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "7e82a47c-32b6-4797-805a-0b6838f36988",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"50958125.0"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 \"nulltes\" Quartil Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "cde558cf-553b-4325-ba99-69e7b1b44859",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1950-12-31 00:00:00')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 \"nulltes\" Quartil Jahr\n",
"sample_data.Jahr.quantile(0)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "72a78de4-2148-4425-8976-38140ad28f91",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"54129844.4"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 unteres Dezil Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.1)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "8d362838-adc5-46b8-af4c-37ec903898f6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1958-02-05 12:00:00')"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 unteres Dezil Jahr\n",
"sample_data.Jahr.quantile(0.1)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "20398136-ecfc-4ae6-8c35-25a73684c95f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"58729279.0"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.2)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "dcae6434-3e23-4898-999e-dcfa194f30ca",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1965-03-14 00:00:00.000000032')"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Jahr\n",
"sample_data.Jahr.quantile(0.2)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "63014e96-7768-4bf1-b2d8-c68f7b9dfa86",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"61076617.5"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.3)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "ba3384da-cb4d-4e10-a14f-2c8d5266dc18",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1972-04-18 19:12:00.000000016')"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Jahr\n",
"sample_data.Jahr.quantile(0.3)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "6ab49754-4743-4c63-807f-44bcdc05b514",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"61440403.6"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.4)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "5d198d66-38b2-4d14-8b8b-1fa574067315",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1979-05-26 00:00:00.000000064')"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Jahr\n",
"sample_data.Jahr.quantile(0.4)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "8c25ac94-6131-4681-be76-766e84e4cd23",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"80445407.6"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.6)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "e1abe102-777c-45c5-aa9e-722b96e71694",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('1993-08-07 00:00:00')"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Jahr\n",
"sample_data.Jahr.quantile(0.6)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "9847ba5a-a342-455e-93e6-7024260399f7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"81787060.5"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.7)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "207b0cfd-e605-4b89-a021-430e6760f5d1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2000-09-12 04:47:59.999999872')"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Jahr\n",
"sample_data.Jahr.quantile(0.7)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "12fff45d-0fec-43d6-b900-ef1f1ffc7bde",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"82173242.2"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.8)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "18383f84-7889-4259-8b19-1b0a63395b74",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2007-10-19 00:00:00.000000256')"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 Dezile Jahr\n",
"sample_data.Jahr.quantile(0.8)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "d4370370-9a17-4e5c-a9d7-fa80c2acd64a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"82519572.6"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 oberes Dezil Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.9)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "d3c181cf-dff6-478f-9aa8-f8057d0fb34d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2014-11-24 12:00:00')"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 oberes Dezil Jahr\n",
"sample_data.Jahr.quantile(0.9)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "8aac9b3b-c438-4ad6-b7ea-8961d1caa8a2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"83237124.0"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 oberstes Quartil Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(1)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "ada1b24a-0b40-41c3-bb91-58f9255b0141",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2021-12-31 00:00:00')"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.15 oberstes Quartil Jahr\n",
"sample_data.Jahr.quantile(1)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "5c3e774c-e50b-4d1f-91c7-b515d3dce62d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"21683981.0"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.16 IQR Bevölkerungsstand\n",
"sample_data.Bevölkerungsstand.quantile(0.75) - sample_data.Bevölkerungsstand.quantile(0.25)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "837a0551-d3d4-4d00-90a0-c09122fc0ae3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Timedelta('12966 days 00:00:00')"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#R1.16 IQR Jahr\n",
"sample_data.Jahr.quantile(0.75) - sample_data.Jahr.quantile(0.25)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "49f4295a-e440-441f-8ffd-a8b85da48637",
"metadata": {},
"outputs": [],
"source": [
"#R1.17 Kovarianz nicht errechenbar, da sich die Variable \"Jahr\" auf einer Intervallskala bewegt."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "613bd31f-4250-43bc-b1fc-2b08fb4e1e12",
"metadata": {},
"outputs": [],
"source": [
"#R1.18 Korrelationskoeffizient nicht errechenbar, da sich die Variable \"Jahr\" auf einer Intervallskala bewegt."
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "45e1aba9-aedd-4c98-919d-ba663935f016",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMzklEQVR4nO3deXhM5/8+8HuyTSIbElklEWqJnaSIlFgqiF3t+9paWiTUUtTWir2q9jW2Ei1aVVsQW6W1hVhSlBAfEiSWIGR9fn/45XyNmcgMMxly7td1zXU5z3nmnPdz5iS5nW0UQggBIiIiIhkxMXYBRERERAWNAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiAq98PBwKBQKlVeJEiXQoEED7Ny5s0BqqFy5Mho0aAAA6NOnD2xsbNT6NGjQQOoDADdu3IBCocCcOXMKpMYP3eLFixEeHm7UGiZPngyFQpFvvz59+qjsj9bW1ihVqhRat26NNWvWID093eC1pqWlYfLkyTh06JDB1pHXvq6JQqHA5MmTDVbLm/Tp0welSpUyyrrJeMyMXQBRQVmzZg0qVKgAIQSSkpKwcOFCtGrVCjt27ECrVq0Muu6ff/4ZZmYvf9wmTpyIoUOHGnR9crR48WI4OjqiT58+xi5FK1ZWVjh48CAA4Pnz57h16xZ2796NgQMHYu7cudizZw9KlixpsPWnpaVhypQpAKASvInkggGIZKNy5crw8/OTpps1a4ZixYph06ZNBg9AVatWlf5dpkwZlClTxqDr01ZaWhqKFCli7DJkycTEBHXq1FFp69WrF/r27YuWLVuiQ4cO+Pvvv41UHVHhx1NgJFuWlpawsLCAubm5SntGRga+++47VKhQAUqlEiVKlEDfvn1x//59qU/btm3h5eWFnJwcteXWrl0bNWvWlKZfvHiBcePGwdvbGxYWFnB3d8fQoUPx6NEjnWvOzMxE7969YWNjI52+E0Jg8eLFqF69OqysrFCsWDF06NAB169fV3lvgwYNULlyZRw5cgR169ZFkSJF0K9fPwB5n34oVaqUyhGV3NOJUVFRGDx4MBwdHeHg4ID27dvjzp07Ku9NT0/HyJEj4eLigiJFiqB+/fo4ffq02jLT0tIwatQoeHt7w9LSEsWLF4efnx82bdok9bl+/Tq6dOkCNzc3KJVKODs7o3Hjxjh79qxU58WLF3H48GHptFLuKY0XL15g5MiRqF69Ouzt7VG8eHH4+/vj999/VxuvQqHAl19+ifXr18PHxwdFihRBtWrVNJ4q/fPPP1G9enUolUp4e3vr7VRlUFAQBg4ciH/++QdHjhxRmRcREQF/f39YW1vDxsYGTZs2RUxMjEqf10+l5nr1NM+NGzdQokQJAMCUKVOkbZb7udy/fx+ff/45PDw8pJ+BgIAA7N+/X2WZe/bsQePGjWFvb48iRYrAx8cHYWFhauv+77//EBwcDBsbG3h4eGDkyJH5nua7f/8+hgwZgooVK8LGxgZOTk5o1KgRjh49qtLv1VPF8+bNg7e3N2xsbODv768xQIaHh6N8+fJQKpXw8fHBunXr3lgHFV48AkSykZ2djaysLAghcPfuXcyePRvPnj1Dt27dpD45OTlo06YNjh49itGjR6Nu3bq4efMmJk2ahAYNGuDUqVOwsrJCv3790KZNGxw8eBCffvqp9P5///0XJ06cwIIFCwC8DCdt27bFgQMHMG7cONSrVw+xsbGYNGkSoqOjER0dDaVSqVX9jx49Qvv27REXF4fDhw/D19cXAPDFF18gPDwcw4YNw8yZM/HgwQNMnToVdevWxblz5+Ds7CwtIzExET169MDo0aMxffp0mJi83f+BBgwYgBYtWuDnn3/GrVu38PXXX6NHjx7SKR0A6Nu3LyIiIjB69Gg0atQIly5dQrt27ZCamqqyrNDQUKxfvx7fffcdatSogWfPnuHChQtISUmR+gQHByM7OxuzZs2Cp6cnkpOTcfz4cSlEbt++HR06dIC9vT0WL14MANJ2TU9Px4MHDzBq1Ci4u7sjIyMD+/fvR/v27bFmzRr06tVLpZ4///wTJ0+exNSpU2FjY4NZs2ahXbt2uHz5MkqXLg0AOHDgANq0aQN/f39s3rxZqu3u3btvtT1f17p1ayxevBhHjhxB/fr1AQDTp0/HhAkT0LdvX0yYMAEZGRmYPXs26tWrhxMnTqBixYpaL9/V1RV79uxBs2bN0L9/fwwYMAAApFDUs2dPnDlzBt9//z3KlSuHR48e4cyZMyqfyapVqzBw4EAEBgZi6dKlcHJywpUrV3DhwgWVdWVmZqJ169bo378/Ro4ciSNHjmDatGmwt7fHt99+m2eNDx48AABMmjQJLi4uePr0KbZv344GDRrgwIEDaiFv0aJFqFChAubPnw/g5anm4OBgxMfHw97eHsDL8NO3b1+0adMGc+fOxePHjzF58mSkp6e/9c8CfcAEUSG3Zs0aAUDtpVQqxeLFi1X6btq0SQAQW7duVWk/efKkACD1z8zMFM7OzqJbt24q/UaPHi0sLCxEcnKyEEKIPXv2CABi1qxZKv0iIiIEALF8+XKpLTAwUAQGBkrT8fHxAoCYPXu2iI+PFxUrVhQVK1YUN27ckPpER0cLAGLu3Lkqy79165awsrISo0ePVlk+AHHgwAG1bQRATJo0Sa3dy8tL9O7dW5rO3ZZDhgxR6Tdr1iwBQCQmJgohhLh48aIAIMaMGaPSL3f7vrrMypUri7Zt26qtO1dycrIAIObPn59nHyGEqFSpksr2y0tWVpbIzMwU/fv3FzVq1FCZB0A4OzuL1NRUqS0pKUmYmJiIsLAwqa127drCzc1NPH/+XGpLTU0VxYsXF9r8Wu3du7ewtrbOc35cXJwAIAYPHiyEECIhIUGYmZmJr776SqXfkydPhIuLi+jUqZPU9vp+9Oo6vby8pOn79+/n+bnb2NiIESNG5FnfkydPhJ2dnfjkk09ETk5Onv169+4tAIgtW7aotAcHB4vy5curtOVVS67cz61x48aiXbt2Unvuz0mVKlVEVlaW1H7ixAkBQGzatEkIIUR2drZwc3MTNWvWVKn5xo0bwtzcXGXbkDww8pJsrFu3DidPnsTJkyexe/du9O7dG0OHDsXChQulPjt37kTRokXRqlUrZGVlSa/q1avDxcVFumPGzMwMPXr0wLZt2/D48WMAL48wrV+/Hm3atIGDgwMASEdEXr8wt2PHjrC2tsaBAwfyrfvMmTOoU6cOnJ2d8ddff8HLy0ulXoVCgR49eqjU6+LigmrVqqnd4VOsWDE0atRI102npnXr1irTudc43bx5EwBw+PBhAECnTp1U+nXo0EG6GDxXrVq1sHv3bowdOxaHDh3C8+fPVeYXL14cZcqUwezZszFv3jzExMRoPPX4Jr/88gsCAgJgY2MDMzMzmJubY9WqVYiLi1Pr27BhQ9ja2krTzs7OcHJyksb27NkznDx5Eu3bt4elpaXUz9bWVm/XkgkhVKb37t2LrKws9OrVS+VztrS0RGBgoN7v5KpVqxbCw8Px3Xff4e+//0ZmZqbK/OPHjyM1NRVDhgzJ9643hUKhtl2qVq0qbc83Wbp0KWrWrAlLS0vpcztw4IDGz61FixYwNTVVWQfwf/vk5cuXcefOHXTr1k2lZi8vL9StWzffWqjwYQAi2fDx8YGfnx/8/PzQrFkzLFu2DEFBQRg9erR0KuXu3bt49OiRdG3Qq6+kpCQkJydLy+vXrx9evHiBzZs3A3j5RyoxMRF9+/aV+qSkpMDMzEw6tZBLoVDAxcVF5ZRCXiIjI3H37l0MGDAARYsWVZl39+5dCCHg7OysVu/ff/+tUi/w8tSHPuQGvFy5p5tyw0vuuF49/Qa8DI6vv3fBggUYM2YMfvvtNzRs2BDFixdH27ZtcfXqVQAvt9WBAwfQtGlTzJo1CzVr1kSJEiUwbNgwPHnyJN9at23bhk6dOsHd3R0bNmxAdHQ0Tp48KX1++Y0td3y5Y3v48CFycnLg4uKi1k9T29vI/aPt5uYGANKptY8//ljtc46IiFD7nN9VREQEevfujZUrV8Lf3x/FixdHr169kJSUBADS9XDa3KVWpEgRlaAIvNyemrb9q+bNm4fBgwejdu3a2Lp1K/7++2+cPHkSzZo1UwvJgPb7pCE/N/qw8BogkrWqVati7969uHLlCmrVqiVd1Ltnzx6N/V89MlCxYkXUqlULa9aswRdffIE1a9bAzc0NQUFBUh8HBwdkZWXh/v37KiFI/P9b8T/++ON8a/z6669x7do16X//r16z4ujoCIVCgaNHj2q8luj1trz+t65UKjVelKpNQNMk94/R3bt34e7uLrVnZWWpLdPa2hpTpkzBlClTcPfuXeloUKtWrfDvv/8CePm/9FWrVgEArly5gi1btmDy5MnIyMjA0qVL31jLhg0b4O3tjYiICJXxv+2zdooVKwaFQiGFgVdpansbO3bsAPB/t6c7OjoCAH799VeVI4CaWFpaSkclX6VLSHJ0dMT8+fMxf/58JCQkYMeOHRg7dizu3buHPXv2SPvy//73P62XqasNGzagQYMGWLJkiUq7NqFXk9x90pCfG31YeASIZC33LqLcX+gtW7ZESkoKsrOzpaNFr77Kly+v8v6+ffvin3/+wbFjx/DHH3+gd+/eKofhGzduDODlL/NXbd26Fc+ePZPmv4mJiQmWLVuG4cOHo0+fPip/EFq2bAkhBG7fvq2x3ipVqmi1HUqVKoXY2FiVtoMHD+Lp06davf91uRfuRkREqLT/+uuvyMrKyvN9zs7O6NOnD7p27YrLly8jLS1NrU+5cuUwYcIEVKlSBWfOnJHaXz1K8yqFQgELCwuV8JOUlKTxLjBtWFtbo1atWti2bZvKUYwnT57gjz/+eKtlvioyMhIrV65E3bp18cknnwAAmjZtCjMzM1y7dk3j5/zq4x1KlSqFK1euqAS8lJQUHD9+XGU9rx8hyYunpye+/PJLNGnSRNredevWhb29PZYuXap2uk5fFAqFWoCPjY1FdHT0Wy2vfPnycHV1xaZNm1Rqvnnzptq2IXngESCSjQsXLkh/fFNSUrBt2zZERkaiXbt28Pb2BgB06dIFGzduRHBwMIYPH45atWrB3Nwc//vf/xAVFYU2bdqgXbt20jK7du2K0NBQdO3aFenp6WrX+jRp0gRNmzbFmDFjkJqaioCAAOkusBo1aqBnz55a1z937lzY2tpiyJAhePr0Kb7++msEBATg888/R9++fXHq1CnUr18f1tbWSExMxLFjx1ClShUMHjw432X37NkTEydOxLfffovAwEBcunQJCxculO6e0VWlSpXQtWtXzJ07F6ampmjUqBEuXryIuXPnwt7eXuWOm9q1a6Nly5aoWrUqihUrhri4OKxfvx7+/v4oUqQIYmNj8eWXX6Jjx44oW7YsLCwscPDgQcTGxmLs2LHScqpUqYLNmzcjIiICpUuXhqWlJapUqYKWLVti27ZtGDJkCDp06IBbt25h2rRpcHV1lU6z6WratGlo1qwZmjRpgpEjRyI7OxszZ86EtbW1dPdSfnJycqTbtNPT05GQkIDdu3djy5Yt8PHxwZYtW6S+pUqVwtSpUzF+/Hhcv35deobV3bt3ceLECekoGvDys1y2bBl69OiBgQMHIiUlBbNmzYKdnZ3K+m1tbeHl5YXff/8djRs3RvHixeHo6IhixYqhYcOG6NatGypUqABbW1ucPHkSe/bsQfv27QEANjY2mDt3LgYMGIBPP/0UAwcOhLOzM/777z+cO3dO5bq6t9WyZUtMmzYNkyZNQmBgIC5fvoypU6fC29v7jSE6LyYmJpg2bRoGDBiAdu3aYeDAgXj06BEmT57MU2ByZcwrsIkKgqa7wOzt7UX16tXFvHnzxIsXL1T6Z2Zmijlz5ohq1aoJS0tLYWNjIypUqCC++OILcfXqVbXld+vWTQAQAQEBGtf//PlzMWbMGOHl5SXMzc2Fq6urGDx4sHj48KFKvzfdBfaq2bNnCwDi22+/ldpWr14tateuLaytrYWVlZUoU6aM6NWrlzh16pTK8itVqqSxxvT0dDF69Gjh4eEhrKysRGBgoDh79myed4GdPHlS5f1RUVECgIiKipLaXrx4IUJDQ4WTk5OwtLQUderUEdHR0cLe3l6EhIRI/caOHSv8/PxEsWLFhFKpFKVLlxYhISHSnXR3794Vffr0ERUqVBDW1tbCxsZGVK1aVfzwww8qd/3cuHFDBAUFCVtbWwFA5a6eGTNmiFKlSgmlUil8fHzEihUrxKRJk9Tu2AIghg4dqrZ9Xt8OQgixY8cOUbVqVWFhYSE8PT3FjBkzNC5Tk9y7o3JfVlZWwtPTU7Rq1UqsXr1apKena3zfb7/9Jho2bCjs7OyEUqkUXl5eokOHDmL//v0q/dauXSt8fHyEpaWlqFixooiIiFC7C0wIIfbv3y9q1KghlEqldHfeixcvxKBBg0TVqlWFnZ2dsLKyEuXLlxeTJk0Sz549U3n/rl27RGBgoLC2thZFihQRFStWFDNnzlQZp6a73fLa9q/eBZaeni5GjRol3N3dhaWlpahZs6b47bff1MaR18+JpmUKIcTKlStF2bJlhYWFhShXrpxYvXq1xm1DhZ9CCAMdvyQies3x48cREBCAjRs3qjx/iYiooDEAEZFBREZGIjo6Gr6+vrCyssK5c+cwY8YM2NvbIzY2Vu3OICKigsRrgIjIIOzs7LBv3z7Mnz8fT548gaOjI5o3b46wsDCGHyIyOh4BIiIiItnhbfBEREQkOwxAREREJDsMQERERCQ7vAhag5ycHNy5cwe2trb5ftEfERERvR+EEHjy5Anc3NxUHriqCQOQBnfu3IGHh4exyyAiIqK3cOvWrXy/rJcBSIPcL7y8deuW2uPjiYiI6P2UmpoKDw8PlS+uzgsDkAa5p73s7OwYgIiIiD4w2ly+wougiYiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdsyMXQAREZHclBr7p7FLMLobM1oYdf08AkRERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESyY/QAtHjxYnh7e8PS0hK+vr44evToG/sfPnwYvr6+sLS0ROnSpbF06VK1PvPnz0f58uVhZWUFDw8PhISE4MWLF4YaAhEREX1gjBqAIiIiMGLECIwfPx4xMTGoV68emjdvjoSEBI394+PjERwcjHr16iEmJgbffPMNhg0bhq1bt0p9Nm7ciLFjx2LSpEmIi4vDqlWrEBERgXHjxhXUsIiIiOg9pxBCCGOtvHbt2qhZsyaWLFkitfn4+KBt27YICwtT6z9mzBjs2LEDcXFxUtugQYNw7tw5REdHAwC+/PJLxMXF4cCBA1KfkSNH4sSJE/keXcqVmpoKe3t7PH78GHZ2dm87PCIiIo1Kjf3T2CUY3Y0ZLfS+TF3+fhvtCFBGRgZOnz6NoKAglfagoCAcP35c43uio6PV+jdt2hSnTp1CZmYmAOCTTz7B6dOnceLECQDA9evXsWvXLrRoof8NTURERB8mM2OtODk5GdnZ2XB2dlZpd3Z2RlJSksb3JCUlaeyflZWF5ORkuLq6okuXLrh//z4++eQTCCGQlZWFwYMHY+zYsXnWkp6ejvT0dGk6NTX1HUZGRERE7zujXwStUChUpoUQam359X+1/dChQ/j++++xePFinDlzBtu2bcPOnTsxbdq0PJcZFhYGe3t76eXh4fG2wyEiIqIPgNGOADk6OsLU1FTtaM+9e/fUjvLkcnFx0djfzMwMDg4OAICJEyeiZ8+eGDBgAACgSpUqePbsGT7//HOMHz8eJibqmW/cuHEIDQ2VplNTUxmCiIiICjGjHQGysLCAr68vIiMjVdojIyNRt25dje/x9/dX679v3z74+fnB3NwcAJCWlqYWckxNTSGEQF7XeyuVStjZ2am8iIiIqPAy6imw0NBQrFy5EqtXr0ZcXBxCQkKQkJCAQYMGAXh5ZKZXr15S/0GDBuHmzZsIDQ1FXFwcVq9ejVWrVmHUqFFSn1atWmHJkiXYvHkz4uPjERkZiYkTJ6J169YwNTUt8DESERHR+8dop8AAoHPnzkhJScHUqVORmJiIypUrY9euXfDy8gIAJCYmqjwTyNvbG7t27UJISAgWLVoENzc3LFiwAJ999pnUZ8KECVAoFJgwYQJu376NEiVKoFWrVvj+++8LfHxERET0fjLqc4DeV3wOEBERGRKfAyTj5wARERERGQsDEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREcmOmbELWLx4MWbPno3ExERUqlQJ8+fPR7169fLsf/jwYYSGhuLixYtwc3PD6NGjMWjQIJU+jx49wvjx47Ft2zY8fPgQ3t7emDt3LoKDgw09HCKtlBr7p7FLMKobM1oYuwQikjmjHgGKiIjAiBEjMH78eMTExKBevXpo3rw5EhISNPaPj49HcHAw6tWrh5iYGHzzzTcYNmwYtm7dKvXJyMhAkyZNcOPGDfz666+4fPkyVqxYAXd394IaFhEREb3ndA5A/fr1w5MnT9Tanz17hn79+um0rHnz5qF///4YMGAAfHx8MH/+fHh4eGDJkiUa+y9duhSenp6YP38+fHx8MGDAAPTr1w9z5syR+qxevRoPHjzAb7/9hoCAAHh5eeGTTz5BtWrVdBsoERERFVo6B6C1a9fi+fPnau3Pnz/HunXrtF5ORkYGTp8+jaCgIJX2oKAgHD9+XON7oqOj1fo3bdoUp06dQmZmJgBgx44d8Pf3x9ChQ+Hs7IzKlStj+vTpyM7OzrOW9PR0pKamqryIiIio8NL6GqDU1FQIISCEwJMnT2BpaSnNy87Oxq5du+Dk5KT1ipOTk5GdnQ1nZ2eVdmdnZyQlJWl8T1JSksb+WVlZSE5OhqurK65fv46DBw+ie/fu2LVrF65evYqhQ4ciKysL3377rcblhoWFYcqUKVrXTkRERB82rQNQ0aJFoVAooFAoUK5cObX5CoXirUKEQqFQmRZCqLXl1//V9pycHDg5OWH58uUwNTWFr68v7ty5g9mzZ+cZgMaNG4fQ0FBpOjU1FR4eHjqPhYiIiD4MWgegqKgoCCHQqFEjbN26FcWLF5fmWVhYwMvLC25ublqv2NHREaampmpHe+7du6d2lCeXi4uLxv5mZmZwcHAAALi6usLc3BympqZSHx8fHyQlJSEjIwMWFhZqy1UqlVAqlVrXTkRERB82rQNQYGAggJd3Ynl6er7xKI02LCws4Ovri8jISLRr105qj4yMRJs2bTS+x9/fH3/88YdK2759++Dn5wdzc3MAQEBAAH7++Wfk5OTAxOTlJU5XrlyBq6urxvBDRERE8qNVAIqNjUXlypVhYmKCx48f4/z583n2rVq1qtYrDw0NRc+ePeHn5wd/f38sX74cCQkJ0nN9xo0bh9u3b0sXVw8aNAgLFy5EaGgoBg4ciOjoaKxatQqbNm2Sljl48GD89NNPGD58OL766itcvXoV06dPx7Bhw7Sui4iIiAo3rQJQ9erVkZSUBCcnJ1SvXh0KhUK69uZVCoXijXdbva5z585ISUnB1KlTkZiYiMqVK2PXrl3w8vICACQmJqo8E8jb2xu7du1CSEgIFi1aBDc3NyxYsACfffaZ1MfDwwP79u1DSEgIqlatCnd3dwwfPhxjxozRui4iIiIq3BRCU5J5zc2bN6XTXjdv3nxj39zw8iFLTU2Fvb09Hj9+DDs7O2OXQ4UQnwTNJ0GTvMn9dwBgmN8Duvz91uoI0KuhpjAEHCIiIpK3t/oqjPXr1yMgIABubm7SEaH58+fj999/12txRERERIagcwBasmQJQkNDERwcjEePHknX/BQtWhTz58/Xd31EREREeqdzAPrpp5+wYsUKjB8/XuVZO35+fm+8O4yIiIjofaFzAIqPj0eNGjXU2pVKJZ49e6aXooiIiIgMSecA5O3tjbNnz6q17969GxUrVtRHTUREREQGpfWToHN9/fXXGDp0KF68eAEhBE6cOIFNmzYhLCwMK1euNESNRERERHqlcwDq27cvsrKyMHr0aKSlpaFbt25wd3fHjz/+iC5duhiiRiIiIiK90jkAPXr0CAMHDsTAgQORnJwsffs6APz333/46KOP9F4kERERkT7pfA1QcHAwXrx4AeDlN7rnhp/Lly+jQYMGei2OiIiIyBB0DkDFihVD27ZtkZWVJbXFxcWhQYMGKt/JRURERPS+0jkAbd26Fc+ePUO3bt0ghMCFCxfQoEEDdO3aFT/++KMhaiQiIiLSK50DkKWlJXbu3ImrV6+iY8eOaNy4MXr16oV58+YZoj4iIiIivdPqIujU1FSVaYVCgYiICHz66af47LPPMHHiRKkPvz2diIiI3ndaBaCiRYtCoVCotQshsHTpUixbtgxCCCgUCum7wYiIiIjeV1oFoKioKEPXQURERFRgtApAgYGBhq6DiIiIqMDo/CDE2NhYje0KhQKWlpbw9PSEUql858KIiIiIDEXnAFS9enWN1wPlMjc3R+fOnbFs2TJYWlq+U3FEREREhqDzbfDbt29H2bJlsXz5cpw9exYxMTFYvnw5ypcvj59//hmrVq3CwYMHMWHCBEPUS0RERPTOdD4C9P333+PHH39E06ZNpbaqVauiZMmSmDhxIk6cOAFra2uMHDkSc+bM0WuxRERERPqg8xGg8+fPw8vLS63dy8sL58+fB/DyNFliYuK7V0dERERkADoHoAoVKmDGjBnIyMiQ2jIzMzFjxgxUqFABAHD79m04Ozvrr0oiIiIiPdL5FNiiRYvQunVrlCxZElWrVoVCoUBsbCyys7Oxc+dOAMD169cxZMgQvRdLREREpA86B6C6devixo0b2LBhA65cuQIhBDp06IBu3brB1tYWANCzZ0+9F0pERESkLzoHIACwsbHBoEGD9F0LERERUYHQKgDt2LEDzZs3h7m5OXbs2PHGvq1bt9ZLYURERESGolUAatu2LZKSkuDk5IS2bdvm2Y9fhkpEREQfAq0CUE5OjsZ/ExEREX2ItLoNvnjx4khOTgYA9OvXD0+ePDFoUURERESGpFUAysjIQGpqKgBg7dq1ePHihUGLIiIiIjIkrU6B+fv7o23btvD19YUQAsOGDYOVlZXGvqtXr9ZrgURERET6plUA2rBhA3744Qdcu3YNCoUCjx8/5lEgIiIi+mBpFYCcnZ0xY8YMAIC3tzfWr18PBwcHgxZGREREZCg6PwgxPj7eEHUQERERFRidA9DUqVPfOP/bb79962KIiIiICoLOAWj79u0q05mZmYiPj4eZmRnKlCnDAERERETvPZ0DUExMjFpbamoq+vTpg3bt2umlKCIiIiJD0uo5QPmxs7PD1KlTMXHiRH0sjoiIiMig9BKAAODRo0d4/PixvhZHREREZDA6nwJbsGCByrQQAomJiVi/fj2aNWumt8KIiIiIDEXnAPTDDz+oTJuYmKBEiRLo3bs3xo0bp7fCiIiIiAyFzwEiIiIi2dHbNUBEREREHwqdjwABwMmTJ/HLL78gISEBGRkZKvO2bduml8KIiIiIDEWrI0ALFiyQvvx08+bNCAgIwKVLl7B9+3ZkZmbi0qVLOHjwIOzt7Q1aLBEREZE+aBWAfvjhBzx79gwAMH36dPzwww/YuXMnLCws8OOPPyIuLg6dOnWCp6enQYslIiIi0getAlB8fLz07e/Xrl1DcHAwAECpVOLZs2dQKBQICQnB8uXLDVcpERERkZ5oFYAaNWqER48eAQCKFSuGp0+fAgDc3d1x4cIFAC8fhJiWlmaYKomIiIj0SKuLoKtVqwZzc3MAwCeffIKDBw+iSpUq6NSpE4YPH46DBw8iMjISjRs3NmixRERERPqgVQB69eGHCxYswPPnzwEA48aNg7m5OY4dO4b27dvzu8CIiIjog6DzbfBOTk7Sv01MTDB69GiMHj1ar0URERERGZLWASg1NVWrfnZ2dm9dDBEREVFB0DoAFS1aFAqFIs/5QggoFApkZ2frpTAiIiIiQ9E6AEVFRUn/FkIgODgYK1euhLu7u0EKIyIiIjIUrQNQYGCgyrSpqSnq1KmD0qVL670oIiIiIkPil6ESERGR7DAAERERkey8UwB600XRRERERO8rra8Bat++vcr0ixcvMGjQIFhbW6u0b9u2TT+VERERERmI1gHI3t5eZbpHjx56L4aIiIioIGgdgNasWWPIOoiIiIgKDC+CJiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZeasAtH79egQEBMDNzQ03b94EAMyfPx+///67XosjIiIiMgSdA9CSJUsQGhqK4OBgPHr0CNnZ2QCAokWLYv78+fquj4iIiEjvdA5AP/30E1asWIHx48fD1NRUavfz88P58+f1WhwRERGRIegcgOLj41GjRg21dqVSiWfPnumlKCIiIiJD0jkAeXt74+zZs2rtu3fvRsWKFXUuYPHixfD29oalpSV8fX1x9OjRN/Y/fPgwfH19YWlpidKlS2Pp0qV59t28eTMUCgXatm2rc11ERERUeGn9VRi5vv76awwdOhQvXryAEAInTpzApk2bEBYWhpUrV+q0rIiICIwYMQKLFy9GQEAAli1bhubNm+PSpUvw9PRU6x8fH4/g4GAMHDgQGzZswF9//YUhQ4agRIkS+Oyzz1T63rx5E6NGjUK9evV0HSIREREVcjoHoL59+yIrKwujR49GWloaunXrBnd3d/z444/o0qWLTsuaN28e+vfvjwEDBgB4eSfZ3r17sWTJEoSFhan1X7p0KTw9PaWLrX18fHDq1CnMmTNHJQBlZ2eje/fumDJlCo4ePYpHjx7pOkwiIiIqxN7qNviBAwfi5s2buHfvHpKSknDr1i30799fp2VkZGTg9OnTCAoKUmkPCgrC8ePHNb4nOjparX/Tpk1x6tQpZGZmSm1Tp05FiRIltK4pPT0dqampKi8iIiIqvHQOQFOmTMG1a9cAAI6OjnBycnqrFScnJyM7OxvOzs4q7c7OzkhKStL4nqSkJI39s7KykJycDAD466+/sGrVKqxYsULrWsLCwmBvby+9PDw8dBwNERERfUh0DkBbt25FuXLlUKdOHSxcuBD3799/pwIUCoXKtBBCrS2//rntT548QY8ePbBixQo4OjpqXcO4cePw+PFj6XXr1i0dRkBEREQfGp0DUGxsLGJjY9GoUSPMmzcP7u7uCA4Oxs8//4y0tDStl+Po6AhTU1O1oz337t1TO8qTy8XFRWN/MzMzODg44Nq1a7hx4wZatWoFMzMzmJmZYd26ddixYwfMzMykI1evUyqVsLOzU3kRERFR4fVW1wBVqlQJ06dPx/Xr1xEVFQVvb2+MGDECLi4uWi/DwsICvr6+iIyMVGmPjIxE3bp1Nb7H399frf++ffvg5+cHc3NzVKhQAefPn8fZs2elV+vWrdGwYUOcPXuWp7aIiIgIwFvcBfY6a2trWFlZwcLCAk+ePNHpvaGhoejZsyf8/Pzg7++P5cuXIyEhAYMGDQLw8tTU7du3sW7dOgDAoEGDsHDhQoSGhmLgwIGIjo7GqlWrsGnTJgCApaUlKleurLKOokWLAoBaOxEREcnXWwWg+Ph4/Pzzz9i4cSOuXLmC+vXrY/LkyejYsaNOy+ncuTNSUlIwdepUJCYmonLlyti1axe8vLwAAImJiUhISJD6e3t7Y9euXQgJCcGiRYvg5uaGBQsWqD0DiIiIiOhNFCL3KmIt+fv748SJE6hSpQq6d+8uPQeoMElNTYW9vT0eP37M64HIIEqN/dPYJRjVjRktjF0CkVHJ/XcAYJjfA7r8/db5CFDDhg2xcuVKVKpU6a0LJCIiIjImnQPQ9OnTDVEHERERUYHRKgCFhoZi2rRpsLa2Rmho6Bv7zps3Ty+FERERERmKVgEoJiZG+qqJmJgYgxZEREREZGhaBaCoqCiN/yYiIiL6EOn8IMR+/fppfN7Ps2fP0K9fP70URURERGRIOgegtWvX4vnz52rtz58/lx5YSERERPQ+0/ousNTUVAghIITAkydPYGlpKc3Lzs7Grl273vqb4YmIiIgKktYBqGjRolAoFFAoFChXrpzafIVCgSlTpui1OCIiIiJD0DoARUVFQQiBRo0aYevWrShevLg0z8LCAl5eXnBzczNIkURERET6pHUACgwMBPDye8A8PDxgYvJWXyRPREREZHQ6Pwk694tK09LSkJCQgIyMDJX5VatW1U9lRERERAaicwC6f/8++vbti927d2ucn52d/c5FERERERmSzuexRowYgYcPH+Lvv/+GlZUV9uzZg7Vr16Js2bLYsWOHIWokIiIi0iudjwAdPHgQv//+Oz7++GOYmJjAy8sLTZo0gZ2dHcLCwtCihf6/3p6IiIhIn3Q+AvTs2TPpeT/FixfH/fv3AQBVqlTBmTNn9FsdERERkQHoHIDKly+Py5cvAwCqV6+OZcuW4fbt21i6dClcXV31XiARERGRvul8CmzEiBFITEwEAEyaNAlNmzbFxo0bYWFhgfDwcH3XR0RERKR3Ogeg7t27S/+uUaMGbty4gX///Reenp5wdHTUa3FEREREhqBzAHpdkSJFULNmTX3UQkRERFQgtApAoaGhWi9w3rx5b10MERERUUHQKgDFxMRotTCFQvFOxRAREREVBK0CUFRUlKHrICIiIiowb/2Npv/99x/27t2L58+fAwCEEHorioiIiMiQdA5AKSkpaNy4McqVK4fg4GDplvgBAwZg5MiRei+QiIiISN90DkAhISEwNzdHQkICihQpIrV37twZe/bs0WtxRERERIag823w+/btw969e1GyZEmV9rJly+LmzZt6K4yIiIjIUN7qu8BePfKTKzk5GUqlUi9FERERERmSzgGofv36WLdunTStUCiQk5OD2bNno2HDhnotjoiIiMgQdD4FNnv2bDRo0ACnTp1CRkYGRo8ejYsXL+LBgwf466+/DFEjERERkV7pfASoYsWKiI2NRa1atdCkSRM8e/YM7du3R0xMDMqUKWOIGomIiIj0SqcjQJmZmQgKCsKyZcswZcoUQ9VEREREZFA6HQEyNzfHhQsX+JUXRERE9EHT+RRYr169sGrVKkPUQkRERFQgdL4IOiMjAytXrkRkZCT8/PxgbW2tMp/fBk9ERETvO50D0IULF1CzZk0AwJUrV1Tm8dQYERERfQh0DkD8ZngiIiL60L31t8ETERERfagYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdsyMXYAclRr7p7FLICIikjUeASIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItkxegBavHgxvL29YWlpCV9fXxw9evSN/Q8fPgxfX19YWlqidOnSWLp0qcr8FStWoF69eihWrBiKFSuGTz/9FCdOnDDkEIiIiOgDY9QAFBERgREjRmD8+PGIiYlBvXr10Lx5cyQkJGjsHx8fj+DgYNSrVw8xMTH45ptvMGzYMGzdulXqc+jQIXTt2hVRUVGIjo6Gp6cngoKCcPv27YIaFhEREb3nFEIIYayV165dGzVr1sSSJUukNh8fH7Rt2xZhYWFq/ceMGYMdO3YgLi5Oahs0aBDOnTuH6OhojevIzs5GsWLFsHDhQvTq1UurulJTU2Fvb4/Hjx/Dzs5Ox1Hlr9TYP/W+TKIPyY0ZLYxdApFR8e+AYX4P6PL322hHgDIyMnD69GkEBQWptAcFBeH48eMa3xMdHa3Wv2nTpjh16hQyMzM1victLQ2ZmZkoXrx4nrWkp6cjNTVV5UVERESFl9ECUHJyMrKzs+Hs7KzS7uzsjKSkJI3vSUpK0tg/KysLycnJGt8zduxYuLu749NPP82zlrCwMNjb20svDw8PHUdDREREHxKjXwStUChUpoUQam359dfUDgCzZs3Cpk2bsG3bNlhaWua5zHHjxuHx48fS69atW7oMgYiIiD4wZsZasaOjI0xNTdWO9ty7d0/tKE8uFxcXjf3NzMzg4OCg0j5nzhxMnz4d+/fvR9WqVd9Yi1KphFKpfItREBER0YfIaEeALCws4Ovri8jISJX2yMhI1K1bV+N7/P391frv27cPfn5+MDc3l9pmz56NadOmYc+ePfDz89N/8URERPRBM+opsNDQUKxcuRKrV69GXFwcQkJCkJCQgEGDBgF4eWrq1Tu3Bg0ahJs3byI0NBRxcXFYvXo1Vq1ahVGjRkl9Zs2ahQkTJmD16tUoVaoUkpKSkJSUhKdPnxb4+IiIiOj9ZLRTYADQuXNnpKSkYOrUqUhMTETlypWxa9cueHl5AQASExNVngnk7e2NXbt2ISQkBIsWLYKbmxsWLFiAzz77TOqzePFiZGRkoEOHDirrmjRpEiZPnlwg4yIiIqL3m1GfA/S+4nOAiAyLzwEiuePfARk/B4iIiIjIWBiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2zIxdABERyU+psX8auwSSOR4BIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2TF6AFq8eDG8vb1haWkJX19fHD169I39Dx8+DF9fX1haWqJ06dJYunSpWp+tW7eiYsWKUCqVqFixIrZv326o8omIiOgDZNQAFBERgREjRmD8+PGIiYlBvXr10Lx5cyQkJGjsHx8fj+DgYNSrVw8xMTH45ptvMGzYMGzdulXqEx0djc6dO6Nnz544d+4cevbsiU6dOuGff/4pqGERERHRe04hhBDGWnnt2rVRs2ZNLFmyRGrz8fFB27ZtERYWptZ/zJgx2LFjB+Li4qS2QYMG4dy5c4iOjgYAdO7cGampqdi9e7fUp1mzZihWrBg2bdqkVV2pqamwt7fH48ePYWdn97bDyxMfAEZyd2NGC2OXQEbG34NkiN8Duvz9NtoRoIyMDJw+fRpBQUEq7UFBQTh+/LjG90RHR6v1b9q0KU6dOoXMzMw39slrmURERCQ/RvsqjOTkZGRnZ8PZ2Vml3dnZGUlJSRrfk5SUpLF/VlYWkpOT4erqmmefvJYJAOnp6UhPT5emHz9+DOBlkjSEnPQ0gyyX6ENhqJ8t+nDw9yAZ4vdA7jK1Obll9O8CUygUKtNCCLW2/Pq/3q7rMsPCwjBlyhS1dg8Pj7wLJ6K3Zj/f2BUQkbEZ8vfAkydPYG9v/8Y+RgtAjo6OMDU1VTsyc+/ePbUjOLlcXFw09jczM4ODg8Mb++S1TAAYN24cQkNDpemcnBw8ePAADg4ObwxObyM1NRUeHh64deuWQa4vet/JffwAtwHHL+/xA9wGch8/YLhtIITAkydP4Obmlm9fowUgCwsL+Pr6IjIyEu3atZPaIyMj0aZNG43v8ff3xx9//KHStm/fPvj5+cHc3FzqExkZiZCQEJU+devWzbMWpVIJpVKp0la0aFFdh6QTOzs72e74AMcPcBtw/PIeP8BtIPfxA4bZBvkd+cll1FNgoaGh6NmzJ/z8/ODv74/ly5cjISEBgwYNAvDyyMzt27exbt06AC/v+Fq4cCFCQ0MxcOBAREdHY9WqVSp3dw0fPhz169fHzJkz0aZNG/z+++/Yv38/jh07ZpQxEhER0fvHqAGoc+fOSElJwdSpU5GYmIjKlStj165d8PLyAgAkJiaqPBPI29sbu3btQkhICBYtWgQ3NzcsWLAAn332mdSnbt262Lx5MyZMmICJEyeiTJkyiIiIQO3atQt8fERERPR+MvpF0EOGDMGQIUM0zgsPD1drCwwMxJkzZ964zA4dOqBDhw76KE/vlEolJk2apHbKTS7kPn6A24Djl/f4AW4DuY8feD+2gVEfhEhERERkDEb/LjAiIiKigsYARERERLLDAERERESywwBEREREssMAZACTJ0+GQqFQebm4uEjzhRCYPHky3NzcYGVlhQYNGuDixYtGrFi/8ht/nz591ObXqVPHiBUbxu3bt9GjRw84ODigSJEiqF69Ok6fPi3NL+z7QX7jL+z7QalSpdTGp1AoMHToUACF//PPb/yF/fPPysrChAkT4O3tDSsrK5QuXRpTp05FTk6O1Kew7wPabANj7gdGvw2+sKpUqRL2798vTZuamkr/njVrFubNm4fw8HCUK1cO3333HZo0aYLLly/D1tbWGOXq3ZvGDwDNmjXDmjVrpGkLC4sCq60gPHz4EAEBAWjYsCF2794NJycnXLt2TeUJ44V5P9Bm/EDh3g9OnjyJ7OxsafrChQto0qQJOnbsCKBwf/5A/uMHCvfnP3PmTCxduhRr165FpUqVcOrUKfTt2xf29vYYPnw4gMK/D2izDQAj7geC9G7SpEmiWrVqGufl5OQIFxcXMWPGDKntxYsXwt7eXixdurSAKjSsN41fCCF69+4t2rRpU2D1GMOYMWPEJ598kuf8wr4f5Dd+IeSxH7xq+PDhokyZMiInJ6fQf/6avDp+IQr/59+iRQvRr18/lbb27duLHj16CCEK/+8AIfLfBkIYdz/gKTADuXr1Ktzc3ODt7Y0uXbrg+vXrAID4+HgkJSUhKChI6qtUKhEYGIjjx48bq1y9y2v8uQ4dOgQnJyeUK1cOAwcOxL1794xUqWHs2LEDfn5+6NixI5ycnFCjRg2sWLFCml/Y94P8xp+rsO8HuTIyMrBhwwb069cPCoWi0H/+r3t9/LkK8+f/ySef4MCBA7hy5QoA4Ny5czh27BiCg4MBFP7fAUD+2yCX0fYDo8SuQm7Xrl3i119/FbGxsSIyMlIEBgYKZ2dnkZycLP766y8BQNy+fVvlPQMHDhRBQUFGqli/3jR+IYTYvHmz2Llzpzh//rzYsWOHqFatmqhUqZJ48eKFkSvXH6VSKZRKpRg3bpw4c+aMWLp0qbC0tBRr164VQohCvx/kN34h5LEf5IqIiBCmpqbS513YP//XvT5+IQr/55+TkyPGjh0rFAqFMDMzEwqFQkyfPl2aL4d9IL9tIIRx9wMGoALw9OlT4ezsLObOnSvt9Hfu3FHpM2DAANG0aVMjVWhYr45fkzt37ghzc3OxdevWAq7McMzNzYW/v79K21dffSXq1KkjhBCFfj/Ib/yaFMb9IFdQUJBo2bKlNF3YP//XvT5+TQrb579p0yZRsmRJsWnTJhEbGyvWrVsnihcvLsLDw4UQ8tgH8tsGmhTkfsBTYAXA2toaVapUwdWrV6W7oZKSklT63Lt3D87OzsYoz+BeHb8mrq6u8PLyynP+h8jV1RUVK1ZUafPx8ZG+3Lew7wf5jT+v9xS2/QAAbt68if3792PAgAFSW2H//F+lafyaFLbP/+uvv8bYsWPRpUsXVKlSBT179kRISAjCwsIAyGMfyG8baFKQ+wEDUAFIT09HXFwcXF1d4e3tDRcXF0RGRkrzMzIycPjwYdStW9eIVRrOq+PXJCUlBbdu3cpz/ocoICAAly9fVmm7cuUKvLy8AKDQ7wf5jV+TwrgfAMCaNWvg5OSEFi1aSG2F/fN/labxa1LYPv+0tDSYmKj+iTU1NZVuAZfDPpDfNtCkQPcDgx9jkqGRI0eKQ4cOievXr4u///5btGzZUtja2oobN24IIYSYMWOGsLe3F9u2bRPnz58XXbt2Fa6uriI1NdXIlevHm8b/5MkTMXLkSHH8+HERHx8voqKihL+/v3B3dy804xdCiBMnTggzMzPx/fffi6tXr4qNGzeKIkWKiA0bNkh9CvN+kN/45bIfZGdnC09PTzFmzBi1eYX588+V1/jl8Pn37t1buLu7i507d4r4+Hixbds24ejoKEaPHi31Kez7QH7bwNj7AQOQAXTu3Fm4uroKc3Nz4ebmJtq3by8uXrwozc/JyRGTJk0SLi4uQqlUivr164vz588bsWL9etP409LSRFBQkChRooQwNzcXnp6eonfv3iIhIcHIVevfH3/8ISpXriyUSqWoUKGCWL58ucr8wr4fvGn8ctkP9u7dKwCIy5cvq80r7J+/EHmPXw6ff2pqqhg+fLjw9PQUlpaWonTp0mL8+PEiPT1d6lPY94H8toGx9wOFEEIY/jgTERER0fuD1wARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAEX0AwsPDUbRoUQBAgwYNMGLECJX5pUqVwvz586VphUKB3377rcDqe9+dPXsWCoUCN27cwOTJk1G9enW9LLdPnz5o27btOy3j9c+uILxpf7lx4wYUCgXOnj0LADh06BAUCgUePXpUoDUSGRoDENFb6tOnDxQKhfRycHBAs2bNEBsbq/d1de7cGVeuXAEAbNu2DdOmTdP7OgqDvMJN5cqVkZiYCA8PD4waNQoHDhwo+OLycPLkSXz++efvtIwGDRpAoVBgxowZavOCg4OhUCgwefLkt1pn3bp1kZiYCHt7+3eqkeh9wwBE9A6aNWuGxMREJCYm4sCBAzAzM0PLli31vh4rKys4OTkBAIoXLw5bW1u9r+NNMjIyCnR9+mZmZgYXFxeYmprCxsYGDg4Oxi5JUqJECRQpUuSdl+Ph4YE1a9aotN25cwcHDx5U+2JJXdZpYWEBFxcXKBSKd66R6H3CAET0DpRKJVxcXODi4oLq1atjzJgxuHXrFu7fvy/1uX37Njp37oxixYrBwcEBbdq0wY0bNwAAe/fuhaWlpdrphWHDhiEwMFCa3rp1KypVqgSlUolSpUph7ty5OtU5depUODs7S6c1jh8/jvr168PKygoeHh4YNmwYnj17JvUvVaoUvvvuO/Tp0wf29vYYOHCgxlMhr55aAv7vVN3evXvh4+MDGxsbKSTmysrKwrBhw1C0aFE4ODhgzJgx6N27t8qppF9//RVVqlSBlZUVHBwc8Omnn0r1HTp0CLVq1YK1tTWKFi2KgIAA3Lx5E+Hh4ZgyZQrOnTsnHZULDw8HAMycOROVK1dGkSJF4OHhgaFDh+Lp06fS+rSpOzs7G6GhoVLdo0ePxuvfJCSEwKxZs1C6dGlYWVmhWrVq+PXXX9/42Wg6HbVy5Uq0a9cORYoUQdmyZbFjx443LgMAWrZsiZSUFPz1118q4woKCpLCc17rfBNNn3t++2OpUqUwffp09OvXD7a2tvD09MTy5ctV+rzp5wL4v9OLc+bMgaurKxwcHDB06FBkZmZqVTdRfhiAiPTk6dOn2LhxIz766CPpCENaWhoaNmwIGxsbHDlyBMeOHZP+uGZkZODTTz9F0aJFsXXrVmk52dnZ2LJlC7p37w4AOH36NDp16oQuXbrg/PnzmDx5MiZOnCj9cX8TIQSGDx+OVatW4dixY6hevTrOnz+Ppk2bon379oiNjUVERASOHTuGL7/8UuW9s2fPRuXKlXH69GlMnDhR6+2QlpaGOXPmYP369Thy5AgSEhIwatQoaf7MmTOxceNGrFmzBn/99RdSU1NVrldKTExE165d0a9fP8TFxeHQoUNo3749hBDIyspC27ZtERgYiNjYWERHR+Pzzz+HQqFA586dMXLkSFSqVEk6Kte5c2cAL48ALVy4EJcuXUJ4eDgOHDiA0aNH61T33LlzsXr1amlbPnjwANu3b1dZxoQJE7BmzRosWbIEFy9eREhICHr06IHDhw9rvf0AYMqUKejUqRNiY2MRHByM7t2748GDB298j4WFBbp3765yFCg8PBz9+vXTad350XZ/nDt3Lvz8/BATE4MhQ4Zg8ODB+PfffwHk/3ORKyoqCteuXUNUVBTWrl2L8PBwrfZ7Iq0UyFeuEhVCvXv3FqampsLa2lpYW1sLAMLV1VWcPn1a6rNq1SpRvnx5kZOTI7Wlp6cLKysrsXfvXiGEEMOGDRONGjWS5u/du1dYWFiIBw8eCCGE6Natm2jSpInKur/++mtRsWJFadrLy0v88MMP0jQA8csvv4gePXqIChUqiFu3bknzevbsKT7//HOV5R09elSYmJiI58+fS8tr27atSp+oqCgBQDx8+FBqi4mJEQBEfHy8EEKINWvWCADiv//+k/osWrRIODs7S9POzs5i9uzZ0nRWVpbw9PQUbdq0EUIIcfr0aQFA3LhxQ7wuJSVFABCHDh1SmyeEEJMmTRLVqlXTOO9VW7ZsEQ4ODtK0NnW7urqKGTNmSNOZmZmiZMmSUt1Pnz4VlpaW4vjx4yrr6t+/v+jatWuetWj67CZMmCBNP336VCgUCrF79+48lxEYGCiGDx8uzp07J2xtbcXTp0/F4cOHhZOTk8jIyBDVqlUTkyZNeuM6t2/fLoQQIj4+XgAQMTExQgj1z13b/bFHjx7SdE5OjnBychJLliwRQmj3c9G7d2/h5eUlsrKypD4dO3YUnTt3znM7EOmCR4CI3kHDhg1x9uxZnD17Fv/88w+CgoLQvHlz3Lx5E8DL/y3/999/sLW1hY2NDWxsbFC8eHG8ePEC165dAwB0794dhw4dwp07dwAAGzduRHBwMIoVKwYAiIuLQ0BAgMp6AwICcPXqVWRnZ+dZW0hICKKjo3H06FGULFlSaj99+jTCw8OlemxsbNC0aVPk5OQgPj5e6ufn5/dW26RIkSIoU6aMNO3q6op79+4BAB4/foy7d++iVq1a0nxTU1P4+vpK09WqVUPjxo1RpUoVdOzYEStWrMDDhw8BvLz+qU+fPmjatClatWqFH3/8UeU0VV6ioqLQpEkTuLu7w9bWFr169UJKSorKab/86k5MTIS/v78038zMTGUbXbp0CS9evECTJk1Utu26deukz1pbVatWlf5tbW0NW1tbqZb83le2bFn8+uuvWL16NXr27Alzc3Od1p0fbffHV8egUCjg4uIijUGbnwsAqFSpEkxNTaXpVz8TondlZuwCiD5k1tbW+Oijj6RpX19f2NvbY8WKFfjuu++Qk5MDX19fbNy4Ue29JUqUAADUqlULZcqUwebNmzF48GBs375d5TSGEELtAlTx2rUnmjRp0gSbNm3C3r17pdNpAJCTk4MvvvgCw4YNU3uPp6enytheZWJiorZuTddjvP4HV6FQqNX7pvGYmpoiMjISx48fx759+/DTTz9h/Pjx+Oeff+Dt7Y01a9Zg2LBh2LNnDyIiIjBhwgRERkaiTp06GrfDzZs3ERwcjEGDBmHatGkoXrw4jh07hv79+6vUr03db5KTkwMA+PPPP+Hu7q4yT6lUar2cvGrJXX5++vXrh0WLFuHSpUs4ceKETuvVhrb745vGoM3PRX7LIHpXDEBEeqRQKGBiYoLnz58DAGrWrImIiAg4OTnBzs4uz/d169YNGzduRMmSJWFiYoIWLVpI8ypWrIhjx46p9D9+/DjKlSun8r/j17Vu3RqtWrVCt27dYGpqii5dukg1Xbx4USW4aSP3D1NiYqJ0dCr3ompt2dvbw9nZGSdOnEC9evUAvLzmKSYmRuX2dYVCgYCAAAQEBODbb7+Fl5cXtm/fjtDQUABAjRo1UKNGDYwbNw7+/v74+eefUadOHVhYWKgdFTt16hSysrIwd+5cKcRt2bJF57pdXV3x999/o379+gBeXsx9+vRp1KxZE8DLz0mpVCIhIUHlAvaC1q1bN4waNQrVqlVDxYoV9b78t90fX6XtzwWRIfEUGNE7SE9PR1JSEpKSkhAXF4evvvoKT58+RatWrQC8PL3l6OiINm3a4OjRo4iPj8fhw4cxfPhw/O9//5OW0717d5w5cwbff/89OnToAEtLS2neyJEjceDAAUybNg1XrlzB2rVrsXDhQpULdPPSrl07rF+/Hn379pXuRhozZgyio6MxdOhQnD17FlevXsWOHTvw1VdfvXFZH330ETw8PDB58mRcuXIFf/75p853owHAV199hbCwMPz++++4fPkyhg8fjocPH0pHFf755x9Mnz4dp06dQkJCArZt24b79+/Dx8cH8fHxGDduHKKjo3Hz5k3s27cPV65cgY+PD4CXdx/Fx8fj7NmzSE5ORnp6OsqUKYOsrCz89NNPuH79OtavX4+lS5fqXPfw4cMxY8YMbN++Hf/++y+GDBmicmeUra0tRo0ahZCQEKxduxbXrl1DTEwMFi1ahLVr1+q8vrdVrFgx6bEMhvAu+2MubX8uiAyJR4CI3sGePXukZ6zY2tqiQoUK+OWXX9CgQQMAL68rOXLkCMaMGYP27dvjyZMncHd3R+PGjVX+51u2bFl8/PHHOHnypNrtyTVr1sSWLVvw7bffYtq0aXB1dcXUqVPRp08frWrs0KEDcnJy0LNnT5iYmKB9+/Y4fPgwxo8fj3r16kEIgTJlykh3TOXF3NwcmzZtwuDBg1GtWjV8/PHH+O6779CxY0ettxfwMoAlJSWhV69eMDU1xeeff46mTZtKRw/s7Oxw5MgRzJ8/H6mpqfDy8sLcuXPRvHlz3L17F//++y/Wrl2LlJQUuLq64ssvv8QXX3wBAPjss8+wbds2NGzYEI8ePcKaNWvQp08fzJs3DzNnzsS4ceNQv359hIWFoVevXjrVPXLkSCQmJqJPnz4wMTFBv3790K5dOzx+/FjqM23aNDg5OSEsLAzXr19H0aJFUbNmTXzzzTc6retd5T413BDedX8EtP+5IDIkhdDlJDcRkZ7l5OTAx8cHnTp14hOuiajA8AgQERWo3FNXgYGBSE9Px8KFCxEfH49u3boZuzQikhFeA0REBcrExATh4eH4+OOPERAQgPPnz2P//v3SdTxERAWBp8CIiIhIdngEiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZOf/AWlg2+9Vu1AKAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#R1.19 Klassen, Histogramm\n",
"plt.hist(sample_data.Bevölkerungsstand/10**6, density = True, bins= [50, 55, 60, 65, 70, 75, 80, 85])\n",
"plt.title(\"Bevölkerungsstand Deutschland\")\n",
"plt.xlabel(\"Bevölkerungsstände in Millionen\")\n",
"plt.ylabel(\"relative Häufigkeit\")\n",
"plt.savefig('hist.png')"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "cea71fad-8e5e-4ccb-8640-3f1bf40633e8",
"metadata": {},
"outputs": [],
"source": [
"#R1.20 Kontingenztabelle"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "07f4273c-8f20-4306-bf7a-d25127bafcf9",
"metadata": {},
"outputs": [],
"source": [
"#R1.21 Rangkorrelationskoeffizient nach Spearman"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:code id:39b5f535 tags:
```
python
import
pandas
as
pd
```
%% Cell type:code id:e84390b6 tags:
```
python
from
matplotlib
import
pyplot
as
plt
```
%% Cell type:code id:3baee1a0-92cc-4d06-8bf6-76d38528079c tags:
```
python
sample_data
=
pd
.
read_csv
(
'
urliste_data-1.csv
'
,
encoding
=
"
ISO-8859-1
"
,
parse_dates
=
[
0
],
dayfirst
=
True
)
```
%% Cell type:code id:3b862dc8-5ef1-4f52-a0e3-5fecb0402fe0 tags:
```
python
sample_data
```
%% Output
Jahr Bevölkerungsstand
0 1950-12-31 50958125
1 1951-12-31 51434777
2 1952-12-31 51863761
3 1953-12-31 52453806
4 1954-12-31 52943295
.. ... ...
67 2017-12-31 82792351
68 2018-12-31 83019213
69 2019-12-31 83166711
70 2020-12-31 83155031
71 2021-12-31 83237124
[72 rows x 2 columns]
%% Cell type:code id:948b6220-27a4-40ce-95e8-46d2512a7fcb tags:
```
python
#R1.6 excel-datei
sample_data
.
to_excel
(
"
excel_data-1.xlsx
"
,
sheet_name
=
"
Sheet1
"
)
```
%% Cell type:code id:eda9688e-eb77-48c9-9a25-9c5a978fafc3 tags:
```
python
jahre
=
pd
.
to_numeric
(
sample_data
.
Jahr
)
```
%% Cell type:code id:130fcbbc-9808-4558-8104-58cabb24373c tags:
```
python
#R1.7 arith. Mittel Bevölkerungsstand
mean_bevoelkerung
=
sample_data
.
Bevölkerungsstand
.
mean
()
print
(
mean_bevoelkerung
)
#arith. Mittel Jahr
mean_date
=
sample_data
.
Jahr
.
mean
()
print
(
mean_date
)
```
%% Output
69025182.1388889
1986-07-01 12:00:00
%% Cell type:code id:286e6fa7-b3f1-4ad7-9d80-5c764517489f tags:
```
python
#R1.7 median Bevölkerungsstand
median_bevoelkerung
=
sample_data
.
Bevölkerungsstand
.
median
()
print
(
median_bevoelkerung
)
#median Jahr
median_date
=
sample_data
.
Jahr
.
median
()
print
(
median_date
)
```
%% Output
61762240.5
1986-07-01 12:00:00
%% Cell type:code id:d6443f4e-176e-40a4-997c-5f9f31900296 tags:
```
python
#R1.7 modus Bevölkerungsstand und Jahr
mode_bevoelkerung
=
sample_data
.
Bevölkerungsstand
.
mode
()
print
(
mode_bevoelkerung
)
mode_date
=
sample_data
.
Jahr
.
mode
()
print
(
mode_date
)
```
%% Output
0 50958125
1 51434777
2 51863761
3 52453806
4 52943295
...
67 82792351
68 83019213
69 83155031
70 83166711
71 83237124
Name: Bevölkerungsstand, Length: 72, dtype: int64
0 1950-12-31
1 1951-12-31
2 1952-12-31
3 1953-12-31
4 1954-12-31
...
67 2017-12-31
68 2018-12-31
69 2019-12-31
70 2020-12-31
71 2021-12-31
Name: Jahr, Length: 72, dtype: datetime64[ns]
%% Cell type:code id:259eb698-7074-4b50-8789-80c58cc6f156 tags:
```
python
#R1.8 Spannweite Bevölkerungsstand und Jahr
spannweite_bevoelkerung
=
sample_data
.
Bevölkerungsstand
.
max
()
-
sample_data
.
Bevölkerungsstand
.
min
()
print
(
spannweite_bevoelkerung
)
spannweite_date
=
sample_data
.
Jahr
.
max
()
-
sample_data
.
Jahr
.
min
()
print
(
spannweite_date
)
```
%% Output
32278999
25933 days 00:00:00
%% Cell type:code id:06c7ad43-6425-41b4-be9a-f7db4ac4ef03 tags:
```
python
#R1.9 mittlere Abweichung vom Median
n
=
len
(
sample_data
)
value
=
0
for
i
in
range
(
n
):
value
+=
abs
(
sample_data
.
Bevölkerungsstand
.
iloc
[
i
]
-
sample_data
.
Bevölkerungsstand
.
median
())
MA_median_population
=
value
/
n
print
(
MA_median_population
)
#für Jahr nicht berechenbar, da es sich um eine Intervallskala handelt
```
%% Output
10703382.222222222
%% Cell type:code id:e9a5daba-41d3-4323-97e9-09d87370c2b0 tags:
```
python
#R1.10 Varianz Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
var
()
#für Jahr nicht berechenbar, da es sich um eine Intervallskala handelt
```
%% Output
142802788477530.62
%% Cell type:code id:9edcc4a6-c295-4f61-ae25-9bee9ac5fcf5 tags:
```
python
#R1.11 Variationskoeffizient Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
std
()
/
sample_data
.
Bevölkerungsstand
.
mean
()
#für Jahr nicht berechenbar, da es sich um eine Intervallskala handelt
```
%% Output
0.1731253971360521
%% Cell type:code id:102eb010-bf06-48aa-8ae2-a5eb27d96f6d tags:
```
python
#R1.12 Box-Whisker-Plot Bevölkerungsstand
plt
.
boxplot
(
sample_data
.
Bevölkerungsstand
/
10
**
6
)
plt
.
title
(
"
Boxplot Bevölkerungsstand Deutschland
"
)
plt
.
ylabel
(
"
Bevölkerung in Millionen
"
)
plt
.
savefig
(
'
boxplot.png
'
)
plt
.
show
()
#Befehl funktioniert nicht für Variable "Jahr"
```
%% Output
%% Cell type:code id:70b57b19-f047-48bd-acde-7488415001c5 tags:
```
python
#R1.13 scatterplot Bevölkerungsstand/Jahr
plt
.
plot
(
sample_data
.
Jahr
,
sample_data
.
Bevölkerungsstand
/
10
**
6
,
'
o
'
)
plt
.
title
(
"
Bevölkerungsstand Deutschland
"
)
plt
.
xlabel
(
"
Jahr
"
)
plt
.
ylabel
(
"
Bevölkerung in Millionen
"
)
plt
.
savefig
(
'
scatter.png
'
)
plt
.
show
()
```
%% Output
%% Cell type:code id:4044f40b-50f0-4922-873c-1407b1d36dfa tags:
```
python
#R1.15 unteres Quartil Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.25
)
```
%% Output
60334393.25
%% Cell type:code id:92c35c04-1ed7-49e8-8fa8-674706f9d498 tags:
```
python
#R1.15 unteres Quartil Jahr
sample_data
.
Jahr
.
quantile
(
0.25
)
```
%% Output
Timestamp('1968-09-30 12:00:00')
%% Cell type:code id:8cd41c01-1015-4774-8b8d-cc4c9cf634ea tags:
```
python
#R1.15 oberes Quartil Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.75
)
```
%% Output
82018374.25
%% Cell type:code id:851a4c4b-a4ac-45ca-bfb4-e7952a34f82b tags:
```
python
#R1.15 oberes Quartil Jahr
sample_data
.
Jahr
.
quantile
(
0.75
)
```
%% Output
Timestamp('2004-03-31 12:00:00')
%% Cell type:code id:7e82a47c-32b6-4797-805a-0b6838f36988 tags:
```
python
#R1.15 "nulltes" Quartil Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0
)
```
%% Output
50958125.0
%% Cell type:code id:cde558cf-553b-4325-ba99-69e7b1b44859 tags:
```
python
#R1.15 "nulltes" Quartil Jahr
sample_data
.
Jahr
.
quantile
(
0
)
```
%% Output
Timestamp('1950-12-31 00:00:00')
%% Cell type:code id:72a78de4-2148-4425-8976-38140ad28f91 tags:
```
python
#R1.15 unteres Dezil Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.1
)
```
%% Output
54129844.4
%% Cell type:code id:8d362838-adc5-46b8-af4c-37ec903898f6 tags:
```
python
#R1.15 unteres Dezil Jahr
sample_data
.
Jahr
.
quantile
(
0.1
)
```
%% Output
Timestamp('1958-02-05 12:00:00')
%% Cell type:code id:20398136-ecfc-4ae6-8c35-25a73684c95f tags:
```
python
#R1.15 Dezile Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.2
)
```
%% Output
58729279.0
%% Cell type:code id:dcae6434-3e23-4898-999e-dcfa194f30ca tags:
```
python
#R1.15 Dezile Jahr
sample_data
.
Jahr
.
quantile
(
0.2
)
```
%% Output
Timestamp('1965-03-14 00:00:00.000000032')
%% Cell type:code id:63014e96-7768-4bf1-b2d8-c68f7b9dfa86 tags:
```
python
#R1.15 Dezile Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.3
)
```
%% Output
61076617.5
%% Cell type:code id:ba3384da-cb4d-4e10-a14f-2c8d5266dc18 tags:
```
python
#R1.15 Dezile Jahr
sample_data
.
Jahr
.
quantile
(
0.3
)
```
%% Output
Timestamp('1972-04-18 19:12:00.000000016')
%% Cell type:code id:6ab49754-4743-4c63-807f-44bcdc05b514 tags:
```
python
#R1.15 Dezile Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.4
)
```
%% Output
61440403.6
%% Cell type:code id:5d198d66-38b2-4d14-8b8b-1fa574067315 tags:
```
python
#R1.15 Dezile Jahr
sample_data
.
Jahr
.
quantile
(
0.4
)
```
%% Output
Timestamp('1979-05-26 00:00:00.000000064')
%% Cell type:code id:8c25ac94-6131-4681-be76-766e84e4cd23 tags:
```
python
#R1.15 Dezile Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.6
)
```
%% Output
80445407.6
%% Cell type:code id:e1abe102-777c-45c5-aa9e-722b96e71694 tags:
```
python
#R1.15 Dezile Jahr
sample_data
.
Jahr
.
quantile
(
0.6
)
```
%% Output
Timestamp('1993-08-07 00:00:00')
%% Cell type:code id:9847ba5a-a342-455e-93e6-7024260399f7 tags:
```
python
#R1.15 Dezile Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.7
)
```
%% Output
81787060.5
%% Cell type:code id:207b0cfd-e605-4b89-a021-430e6760f5d1 tags:
```
python
#R1.15 Dezile Jahr
sample_data
.
Jahr
.
quantile
(
0.7
)
```
%% Output
Timestamp('2000-09-12 04:47:59.999999872')
%% Cell type:code id:12fff45d-0fec-43d6-b900-ef1f1ffc7bde tags:
```
python
#R1.15 Dezile Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.8
)
```
%% Output
82173242.2
%% Cell type:code id:18383f84-7889-4259-8b19-1b0a63395b74 tags:
```
python
#R1.15 Dezile Jahr
sample_data
.
Jahr
.
quantile
(
0.8
)
```
%% Output
Timestamp('2007-10-19 00:00:00.000000256')
%% Cell type:code id:d4370370-9a17-4e5c-a9d7-fa80c2acd64a tags:
```
python
#R1.15 oberes Dezil Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.9
)
```
%% Output
82519572.6
%% Cell type:code id:d3c181cf-dff6-478f-9aa8-f8057d0fb34d tags:
```
python
#R1.15 oberes Dezil Jahr
sample_data
.
Jahr
.
quantile
(
0.9
)
```
%% Output
Timestamp('2014-11-24 12:00:00')
%% Cell type:code id:8aac9b3b-c438-4ad6-b7ea-8961d1caa8a2 tags:
```
python
#R1.15 oberstes Quartil Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
1
)
```
%% Output
83237124.0
%% Cell type:code id:ada1b24a-0b40-41c3-bb91-58f9255b0141 tags:
```
python
#R1.15 oberstes Quartil Jahr
sample_data
.
Jahr
.
quantile
(
1
)
```
%% Output
Timestamp('2021-12-31 00:00:00')
%% Cell type:code id:5c3e774c-e50b-4d1f-91c7-b515d3dce62d tags:
```
python
#R1.16 IQR Bevölkerungsstand
sample_data
.
Bevölkerungsstand
.
quantile
(
0.75
)
-
sample_data
.
Bevölkerungsstand
.
quantile
(
0.25
)
```
%% Output
21683981.0
%% Cell type:code id:837a0551-d3d4-4d00-90a0-c09122fc0ae3 tags:
```
python
#R1.16 IQR Jahr
sample_data
.
Jahr
.
quantile
(
0.75
)
-
sample_data
.
Jahr
.
quantile
(
0.25
)
```
%% Output
Timedelta('12966 days 00:00:00')
%% Cell type:code id:49f4295a-e440-441f-8ffd-a8b85da48637 tags:
```
python
#R1.17 Kovarianz nicht errechenbar, da sich die Variable "Jahr" auf einer Intervallskala bewegt.
```
%% Cell type:code id:613bd31f-4250-43bc-b1fc-2b08fb4e1e12 tags:
```
python
#R1.18 Korrelationskoeffizient nicht errechenbar, da sich die Variable "Jahr" auf einer Intervallskala bewegt.
```
%% Cell type:code id:45e1aba9-aedd-4c98-919d-ba663935f016 tags:
```
python
#R1.19 Klassen, Histogramm
plt
.
hist
(
sample_data
.
Bevölkerungsstand
/
10
**
6
,
density
=
True
,
bins
=
[
50
,
55
,
60
,
65
,
70
,
75
,
80
,
85
])
plt
.
title
(
"
Bevölkerungsstand Deutschland
"
)
plt
.
xlabel
(
"
Bevölkerungsstände in Millionen
"
)
plt
.
ylabel
(
"
relative Häufigkeit
"
)
plt
.
savefig
(
'
hist.png
'
)
```
%% Output
%% Cell type:code id:cea71fad-8e5e-4ccb-8640-3f1bf40633e8 tags:
```
python
#R1.20 Kontingenztabelle
```
%% Cell type:code id:07f4273c-8f20-4306-bf7a-d25127bafcf9 tags:
```
python
#R1.21 Rangkorrelationskoeffizient nach Spearman
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment